ﻻ يوجد ملخص باللغة العربية
We discuss the detection of gravitational-wave backgrounds in the context of Bayesian inference and suggest a practical definition of what it means for a signal to be considered stochastic---namely, that the Bayesian evidence favors a stochastic signal model over a deterministic signal model. A signal can further be classified as Gaussian-stochastic if a Gaussian signal model is favored. In our analysis we use Bayesian model selection to choose between several signal and noise models for simulated data consisting of uncorrelated Gaussian detector noise plus a superposition of sinusoidal signals from an astrophysical population of gravitational-wave sources. For simplicity, we consider co-located and co-aligned detectors with white detector noise, but the method can be extended to more realistic detector configurations and power spectra. The general trend we observe is that a deterministic model is favored for small source numbers, a non-Gaussian stochastic model is preferred for intermediate source numbers, and a Gaussian stochastic model is preferred for large source numbers. However, there is very large variation between individual signal realizations, leading to fuzzy boundaries between the three regimes. We find that a hybrid, trans-dimensional model comprised of a deterministic signal model for individual bright sources and a Gaussian-stochastic signal model for the remaining confusion background outperforms all other models in most instances.
Galactic ultra compact binaries are expected to be the dominant source of gravitational waves in the milli-Hertz frequency band. Of the tens of millions of galactic binaries with periods shorter than an hour, it is estimated that a few tens of thousa
Extending previous work by a number of authors, we have recently presented a new approach in which the detection of gravitational waves from merging neutron star binaries can be used to determine the equation of state of matter at nuclear density and
Roughly every 2-10 minutes, a pair of stellar mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest
We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalising flows and incorporate it into our sampler nessai. Nessai is designed for problems where computing the li
A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal mode