ﻻ يوجد ملخص باللغة العربية
Ultrafast optical control of ferroelectricity using intense terahertz fields has attracted significant interest. Here we show that the nonlinear interactions between two optical phonons in SnTe, a two-dimensional in-plane ferroelectric material, enables a dynamical amplification of the electric polarization within subpicoseconds time domain. Our first principles time dependent simulations show that the infrared-active out-of-plane phonon mode, pumped to nonlinear regimes, spontaneously generates in-plane motions, leading to rectified oscillations in the in-plane electric polarization. We suggest that this dynamical control of ferroelectric material, by nonlinear phonon excitation, can be utilized to achieve ultrafast control of the photovoltaic or other non-linear optical responses.
Nonlinear interactions between phonon modes govern the behavior of vibrationally highly excited solids and molecules. Here, we demonstrate theoretically that optical cavities can be used to control the redistribution of energy from a highly excited c
Ultrashort light pulses can selectively excite charges, spins and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributio
We report phonon renormalization induced by an external electric field E in ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers through measuring the E-dependent thermal conductivity. Our experimental results are in exc
We report that the lowest energy transverse-optic phonon in metallic SnTe softens to near zero energy at the structural transition at $T_C=75 text{~K}$ and importantly show that the energy of this mode below $T_C$ increases as the temperature decreas
We propose a new 2D semiconductor material (TTA-2D) based on the molecular structure of Thiophene-Tetrathia-Annulene (TTA). The TTA-2D structural, electronic, and optical properties were investigated using textit{ab initio} methods. Our results show