ترغب بنشر مسار تعليمي؟ اضغط هنا

Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies

56   0   0.0 ( 0 )
 نشر من قبل Muli Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep metric learning plays a key role in various machine learning tasks. Most of the previous works have been confined to sampling from a mini-batch, which cannot precisely characterize the global geometry of the embedding space. Although researchers have developed proxy- and classification-based methods to tackle the sampling issue, those methods inevitably incur a redundant computational cost. In this paper, we propose a novel Proxy-based deep Graph Metric Learning (ProxyGML) approach from the perspective of graph classification, which uses fewer proxies yet achieves better comprehensive performance. Specifically, multiple global proxies are leveraged to collectively approximate the original data points for each class. To efficiently capture local neighbor relationships, a small number of such proxies are adaptively selected to construct similarity subgraphs between these proxies and each data point. Further, we design a novel reverse label propagation algorithm, by which the neighbor relationships are adjusted according to ground-truth labels, so that a discriminative metric space can be learned during the process of subgraph classification. Extensive experiments carried out on widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate the superiority of the proposed ProxyGML over the state-of-the-art methods in terms of both effectiveness and efficiency. The source code is publicly available at https://github.com/YuehuaZhu/ProxyGML.

قيم البحث

اقرأ أيضاً

Few-shot learning is challenging due to its very limited data and labels. Recent studies in big transfer (BiT) show that few-shot learning can greatly benefit from pretraining on large scale labeled dataset in a different domain. This paper asks a mo re challenging question: can we use as few as possible labels for few-shot learning in both pretraining (with no labels) and fine-tuning (with fewer labels)?. Our key insight is that the clustering of target samples in the feature space is all we need for few-shot finetuning. It explains why the vanilla unsupervised pretraining (poor clustering) is worse than the supervised one. In this paper, we propose transductive unsupervised pretraining that achieves a better clustering by involving target data even though its amount is very limited. The improved clustering result is of great value for identifying the most representative samples (eigen-samples) for users to label, and in return, continued finetuning with the labeled eigen-samples further improves the clustering. Thus, we propose eigen-finetuning to enable fewer shot learning by leveraging the co-evolution of clustering and eigen-samples in the finetuning. We conduct experiments on 10 different few-shot target datasets, and our average few-shot performance outperforms both vanilla inductive unsupervised transfer and supervised transfer by a large margin. For instance, when each target category only has 10 labeled samples, the mean accuracy gain over the above two baselines is 9.2% and 3.42 respectively.
Domain knowledge can often be encoded in the structure of a network, such as convolutional layers for vision, which has been shown to increase generalization and decrease sample complexity, or the number of samples required for successful learning. I n this study, we ask whether sample complexity can be reduced for systems where the structure of the domain is unknown beforehand, and the structure and parameters must both be learned from the data. We show that sample complexity reduction through learning structure is possible for at least two simple cases. In studying these cases, we also gain insight into how this might be done for more complex domains.
61 - Xun Xu , Gim Hee Lee 2020
Point cloud analysis has received much attention recently; and segmentation is one of the most important tasks. The success of existing approaches is attributed to deep network design and large amount of labelled training data, where the latter is as sumed to be always available. However, obtaining 3d point cloud segmentation labels is often very costly in practice. In this work, we propose a weakly supervised point cloud segmentation approach which requires only a tiny fraction of points to be labelled in the training stage. This is made possible by learning gradient approximation and exploitation of additional spatial and color smoothness constraints. Experiments are done on three public datasets with different degrees of weak supervision. In particular, our proposed method can produce results that are close to and sometimes even better than its fully supervised counterpart with 10$times$ fewer labels.
Reference-frame-independent quantum key distribution (RFI QKD) protocol can reduce the requirement on the alignment of reference frames in practical systems. However, comparing with the Bennett-Brassard (BB84) QKD protocol, the main drawback of RFI Q KD is that Alice needs to prepare six encoding states in the three mutually unbiased bases (X, Y, and Z), and Bob also needs to measures the quantum state with such three bases. Here, we show that the RFI QKD protocol can be secured in the case where Alice sends fewer states. In particular, we find that transmitting three states (two eigenstates of the Z basis and one of the eigenstates in the X basis) is sufficient to obtain the comparable secret key rates and the covered distances, even when the security against coherent attacks with statistical fluctuations of finite-key size is considered. Finally, a proof-of-principle experiment based on time-bin encoding is demonstrated to show the feasibility of our scheme, and its merit to simplify the experimental setup.
One common failure mode of Neural Radiance Field (NeRF) models is fitting incorrect geometries when given an insufficient number of input views. We propose DS-NeRF (Depth-supervised Neural Radiance Fields), a loss for learning neural radiance fields that takes advantage of readily-available depth supervision. Our key insight is that sparse depth supervision can be used to regularize the learned geometry, a crucial component for effectively rendering novel views using NeRF. We exploit the fact that current NeRF pipelines require images with known camera poses that are typically estimated by running structure-from-motion (SFM). Crucially, SFM also produces sparse 3D points that can be used as ``free depth supervision during training: we simply add a loss to ensure that depth rendered along rays that intersect these 3D points is close to the observed depth. We find that DS-NeRF can render more accurate images given fewer training views while training 2-6x faster. With only two training views on real-world images, DS-NeRF significantly outperforms NeRF as well as other sparse-view variants. We show that our loss is compatible with these NeRF models, demonstrating that depth is a cheap and easily digestible supervisory signal. Finally, we show that DS-NeRF supports other types of depth supervision such as scanned depth sensors and RGBD reconstruction outputs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا