ترغب بنشر مسار تعليمي؟ اضغط هنا

Scratch-induced surface microstructures on the deformed surface of Al-Cu-Fe icosahedral quasicrystals

114   0   0.0 ( 0 )
 نشر من قبل Valerie Brien
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations of sintered Al-Cu-Fe icosahedral quasicrystal (IQC) have been carried out to understand the origin of some ductility previously noticed within tracks produced by standard tribological scratch tests. Transformation of the icosahedral phase to a modulated structure is shown and a transformation of the IQC to a bcc phase has been found beneath the tracks. Twins and dislocations have also been observed.

قيم البحث

اقرأ أيضاً

96 - J. Wu , Valerie Brien 2020
Microstructure modifications induced by sliding a WC-Co indenter in scratch tests on the surface of a single phase AlCuFe icosahedral quasicrystal (IQC) was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The scratch track was shown tocomprise many smaller tracks. Dislocations were discovered to emerge from the edges of the smaller scratch tracks. Along a small track where shear stress is concentrated, a phase transition from IQC to a body-centered cubic (b.c.c.) phase with lattice parameter a=0.29 nm was pointed out. A modulated quasicrystal state as well as a deformation twin of IQC were determined in the region beneath the scratch.
90 - F. Rosch 2007
Ebert et al. [Phys. Rev. Lett. 77, 3827 (1996)] have fractured icosahedral Al-Mn-Pd single crystals in ultrahigh vacuum and have investigated the cleavage planes in-situ by scanning tunneling microscopy (STM). Globular patterns in the STM-images were interpreted as clusters of atoms. These are significant structural units of quasicrystals. The experiments of Ebert et al. imply that they are also stable physical entities, a property controversially discussed currently. For a clarification we performed the first large scale fracture simulations on three-dimensional complex binary systems. We studied the propagation of mode I cracks in an icosahedral model quasicrystal by molecular dynamics techniques at low temperature. In particular we examined how the shape of the cleavage plane is influenced by the clusters inherent in the model and how it depends on the plane structure. Brittle fracture with no indication of dislocation activity is observed. The crack surfaces are rough on the scale of the clusters, but exhibit constant average heights for orientations perpendicular to high symmetry axes. From detailed analyses of the fractured samples we conclude that both, the plane structure and the clusters, strongly influence dynamic fracture in quasicrystals and that the clusters therefore have to be regarded as physical entities.
91 - B. Lazarovits , L. Szunyogh , 2005
We present a theoretical study of surface states close to 3d transition metal adatoms (Cr, Mn, Fe, Co, Ni and Cu) on a Cu(111) surface in terms of an embedding technique using the fully relativistic Korringa-Kohn-Rostoker method. For each of the adat oms we found resonances in the s-like states to be attributed to a localization of the surface states in the presence of an impurity. We studied the change of the s-like densities of states in the vicinity of the surface state band-edge due to scattering effects mediated via the adatoms d-orbitals. The obtained results show that a magnetic impurity causes spin-polarization of the surface states. In particular, the long-range oscillations of the spin-polarized s-like density of states around an Fe adatom are demonstrated.
We present a detailed characterization of the recently discovered i-$R$-Cd ($R$ = Y, Gd-Tm) binary quasicrystals by means of x-ray diffraction, temperature-dependent dc and ac magnetization, temperature-dependent resistance and temperature-dependent specific heat measurements. Structurally, the broadening of x-ray diffraction peaks found for i-$R$-Cd is dominated by frozen-in phason strain, which is essentially independent of $R$. i-Y-Cd is weakly diamagnetic and manifests a temperature-independent susceptibility. i-Gd-Cd can be characterized as a spin-glass below 4.6 K via dc magnetization cusp, a third order non-linear magnetic susceptibility peak, a frequency-dependent freezing temperature and a broad maximum in the specific heat. i-$R$-Cd ($R$ = Ho-Tm) is similar to i-Gd-Cd in terms of features observed in thermodynamic measurements. i-Tb-Cd and i-Dy-Cd do not show a clear cusp in their zero-field-cooled dc magnetization data, but instead show a more rounded, broad local maximum. The resistivity for i-$R$-Cd is of order 300 $mu Omega$ cm and weakly temperature-dependent. The characteristic freezing temperatures for i-$R$-Cd ($R$ = Gd-Tm) deviate from the de Gennes scaling, in a manner consistent with crystal electric field splitting induced local moment anisotropy.
Optical reflectivity as a simple diagnostic method for testing structural quality of icosahedral quasicrystals 2 The optical reflectivity of Al-based and Ti-based quasicrystalline and approximant samples were investigated versus the quality of their structural morphology using optical reflectometry, X-ray diffraction and transmission electron microscopy. The different structural morphologies were obtained using three different preparation processes : sintering, pulsed laser deposition and reactive cathodic magnetron sputtering. The work demonstrates that the canonical behaviour of icosahedral state in specular reflectivity is extremely sensitive to different and very fine aspects of the microstructure : sizes of grains smaller than 50 nm, slight local diffuse disorder and shifts away from the icosahedral crystallographic structure (approximants). The work explains why the optical properties of the same kind of quasicrystals found in literature sometimes reveal a different behaviour from one author to another. The study then confirms the work of some authors and definitely shows that the canonical behaviour of icosahedral state in specular reflectivity over the 30000-50000 cm-1 domain is characterized by a decreasing function made of steps. It also shows that this behaviour can be interpreted thanks to the cluster hierarchy of the model of Janot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا