ﻻ يوجد ملخص باللغة العربية
We investigate the applicability of machine learning based reduced order model (ML-ROM) to three-dimensional complex flows. As an example, we consider a turbulent channel flow at the friction Reynolds number of $Re_tau=110$ in a minimum domain which can maintain coherent structures of turbulence. Training data set are prepared by direct numerical simulation (DNS). The present ML-ROM is constructed by combining a three-dimensional convolutional neural network autoencoder (CNN-AE) and a long short-term memory (LSTM). The CNN-AE works to map high-dimensional flow fields into a low-dimensional latent space. The LSTM is then utilized to predict a temporal evolution of the latent vectors obtained by the CNN-AE. The combination of CNN-AE and LSTM can represent the spatio-temporal high-dimensional dynamics of flow fields by only integrating the temporal evolution of the low-dimensional latent dynamics. The turbulent flow fields reproduced by the present ML-ROM show statistical agreement with the reference DNS data in time-ensemble sense, which can also be found through an orbit-based analysis. Influences of the population of vortical structures contained in the domain and the time interval used for temporal prediction on the ML- ROM performance are also investigated. The potential and limitation of the present ML-ROM for turbulence analysis are discussed at the end of our presentation.
In recent years, there have been a surge in applications of neural networks (NNs) in physical sciences. Although various algorithmic advances have been proposed, there are, thus far, limited number of studies that assess the interpretability of neura
Reynolds-averaged Navier-Stokes (RANS) equations are presently one of the most popular models for simulating turbulence. Performing RANS simulation requires additional modeling for the anisotropic Reynolds stress tensor, but traditional Reynolds stre
Turbulence modeling is a classical approach to address the multiscale nature of fluid turbulence. Instead of resolving all scales of motion, which is currently mathematically and numerically intractable, reduced models that capture the large-scale be
This article deals with approximating steady-state particle-resolved fluid flow around a fixed particle of interest under the influence of randomly distributed stationary particles in a dispersed multiphase setup using Convolutional Neural Network (C
Convolutional neural networks (CNNs) have recently been applied to predict or model fluid dynamics. However, mechanisms of CNNs for learning fluid dynamics are still not well understood, while such understanding is highly necessary to optimize the ne