ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dark and Bright Channel Prior Guided Deep Network for Retinal Image Quality Assessment

115   0   0.0 ( 0 )
 نشر من قبل Liu Qing
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Retinal image quality assessment is an essential task in the diagnosis of retinal diseases. Recently, there are emerging deep models to grade quality of retinal images. Current state-of-the-arts either directly transfer classification networks originally designed for natural images to quality classification of retinal images or introduce extra image quality priors via multiple CNN branches or independent CNNs. This paper proposes a dark and bright channel prior guided deep network for retinal image quality assessment called GuidedNet. Specifically, the dark and bright channel priors are embedded into the start layer of network to improve the discriminate ability of deep features. In addition, we re-annotate a new retinal image quality dataset called RIQA-RFMiD for further validation. Experimental results on a public retinal image quality dataset Eye-Quality and our re-annotated dataset RIQA-RFMiD demonstrate the effectiveness of the proposed GuidedNet.



قيم البحث

اقرأ أيضاً

Learning structural information is critical for producing an ideal result in retinal image segmentation. Recently, convolutional neural networks have shown a powerful ability to extract effective representations. However, convolutional and pooling op erations filter out some useful structural information. In this paper, we propose an Attention Guided Network (AG-Net) to preserve the structural information and guide the expanding operation. In our AG-Net, the guided filter is exploited as a structure sensitive expanding path to transfer structural information from previous feature maps, and an attention block is introduced to exclude the noise and reduce the negative influence of background further. The extensive experiments on two retinal image segmentation tasks (i.e., blood vessel segmentation, optic disc and cup segmentation) demonstrate the effectiveness of our proposed method.
76 - Ziwen Xu , beiji Zou , Qing Liu 2020
Retinal image quality assessment is an essential prerequisite for diagnosis of retinal diseases. Its goal is to identify retinal images in which anatomic structures and lesions attracting ophthalmologists attention most are exhibited clearly and defi nitely while reject poor quality fundus images. Motivated by this, we mimic the way that ophthalmologists assess the quality of retinal images and propose a method termed SalStructuIQA. First, two salient structures for automated retinal quality assessment. One is the large-size salient structures including optic disc region and exudates in large-size. The other is the tiny-size salient structures which mainly include vessels. Then we incorporate the proposed two salient structure priors with deep convolutional neural network (CNN) to shift the focus of CNN to salient structures. Accordingly, we develop two CNN architectures: Dual-branch SalStructIQA and Single-branch SalStructIQA. Dual-branch SalStructIQA contains two CNN branches and one is guided by large-size salient structures while the other is guided by tiny-size salient structures. Single-branch SalStructIQA contains one CNN branch, which is guided by the concatenation of salient structures in both large-size and tiny-size. Experimental results on Eye-Quality dataset show that our proposed Dual-branch SalStructIQA outperforms the state-of-the-art methods for retinal image quality assessment and Single-branch SalStructIQA is much light-weight comparing with state-of-the-art deep retinal image quality assessment methods and still achieves competitive performances.
122 - Qian Ning , Weisheng Dong , Xin Li 2021
Neural architecture search (NAS) has recently reshaped our understanding on various vision tasks. Similar to the success of NAS in high-level vision tasks, it is possible to find a memory and computationally efficient solution via NAS with highly com petent denoising performance. However, the optimization gap between the super-network and the sub-architectures has remained an open issue in both low-level and high-level vision. In this paper, we present a novel approach to filling in this gap by connecting model-guided design with NAS (MoD-NAS) and demonstrate its application into image denoising. Specifically, we propose to construct a new search space under model-guided framework and develop more stable and efficient differential search strategies. MoD-NAS employs a highly reusable width search strategy and a densely connected search block to automatically select the operations of each layer as well as network width and depth via gradient descent. During the search process, the proposed MoG-NAS is capable of avoiding mode collapse due to the smoother search space designed under the model-guided framework. Experimental results on several popular datasets show that our MoD-NAS has achieved even better PSNR performance than current state-of-the-art methods with fewer parameters, lower number of flops, and less amount of testing time.
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in significant improvement on visual performance, but also pose great challenges for quantitative evaluation. Notably, we observe an increasing inconsistency between perceptual quality and the evaluation results. We present two questions: Can existing IQA methods objectively evaluate recent IR algorithms? With the focus on beating current benchmarks, are we getting better IR algorithms? To answer the questions and promote the development of IQA methods, we contribute a large-scale IQA dataset, called Perceptual Image Processing ALgorithms (PIPAL) dataset. Especially, this dataset includes the results of GAN-based IR algorithms, which are missing in previous datasets. We collect more than 1.13 million human judgments to assign subjective scores for PIPAL images using the more reliable Elo system. Based on PIPAL, we present new benchmarks for both IQA and SR methods. Our results indicate that existing IQA methods cannot fairly evaluate GAN-based IR algorithms. While using appropriate evaluation methods is important, IQA methods should also be updated along with the development of IR algorithms. At last, we shed light on how to improve the IQA performance on GAN-based distortion. Inspired by the find that the existing IQA methods have an unsatisfactory performance on the GAN-based distortion partially because of their low tolerance to spatial misalignment, we propose to improve the performance of an IQA network on GAN-based distortion by explicitly considering this misalignment. We propose the Space Warping Difference Network, which includes the novel l_2 pooling layers and Space Warping Difference layers. Experiments demonstrate the effectiveness of the proposed method.
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant improvement in visual performance, bu t also presented great challenges for quantitative evaluation. Notably, we observe an increasing inconsistency between perceptual quality and the evaluation results. Then we raise two questions: (1) Can existing IQA methods objectively evaluate recent IR algorithms? (2) When focus on beating current benchmarks, are we getting better IR algorithms? To answer these questions and promote the development of IQA methods, we contribute a large-scale IQA dataset, called Perceptual Image Processing Algorithms (PIPAL) dataset. Especially, this dataset includes the results of GAN-based methods, which are missing in previous datasets. We collect more than 1.13 million human judgments to assign subjective scores for PIPAL images using the more reliable Elo system. Based on PIPAL, we present new benchmarks for both IQA and super-resolution methods. Our results indicate that existing IQA methods cannot fairly evaluate GAN-based IR algorithms. While using appropriate evaluation methods is important, IQA methods should also be updated along with the development of IR algorithms. At last, we improve the performance of IQA networks on GAN-based distortions by introducing anti-aliasing pooling. Experiments show the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا