ﻻ يوجد ملخص باللغة العربية
Neural architecture search (NAS) has recently reshaped our understanding on various vision tasks. Similar to the success of NAS in high-level vision tasks, it is possible to find a memory and computationally efficient solution via NAS with highly competent denoising performance. However, the optimization gap between the super-network and the sub-architectures has remained an open issue in both low-level and high-level vision. In this paper, we present a novel approach to filling in this gap by connecting model-guided design with NAS (MoD-NAS) and demonstrate its application into image denoising. Specifically, we propose to construct a new search space under model-guided framework and develop more stable and efficient differential search strategies. MoD-NAS employs a highly reusable width search strategy and a densely connected search block to automatically select the operations of each layer as well as network width and depth via gradient descent. During the search process, the proposed MoG-NAS is capable of avoiding mode collapse due to the smoother search space designed under the model-guided framework. Experimental results on several popular datasets show that our MoD-NAS has achieved even better PSNR performance than current state-of-the-art methods with fewer parameters, lower number of flops, and less amount of testing time.
Deep neural networks have been widely used in image denoising during the past few years. Even though they achieve great success on this problem, they are computationally inefficient which makes them inappropriate to be implemented in mobile devices.
Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising met
Previous works have shown that convolutional neural networks can achieve good performance in image denoising tasks. However, limited by the local rigid convolutional operation, these methods lead to oversmoothing artifacts. A deeper network structure
Fully supervised deep-learning based denoisers are currently the most performing image denoising solutions. However, they require clean reference images. When the target noise is complex, e.g. composed of an unknown mixture of primary noises with unk
Compression is a standard procedure for making convolutional neural networks (CNNs) adhere to some specific computing resource constraints. However, searching for a compressed architecture typically involves a series of time-consuming training/valida