ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the utilization of deterministically modeled chemical reaction networks for the implementation of (feed-forward) neural networks. We develop a general mathematical framework and prove that the ordinary differential equations (ODEs) associated with certain reaction network implementations of neural networks have desirable properties including (i) existence of unique positive fixed points that are smooth in the parameters of the model (necessary for gradient descent), and (ii) fast convergence to the fixed point regardless of initial condition (necessary for efficient implementation). We do so by first making a connection between neural networks and fixed points for systems of ODEs, and then by constructing reaction networks with the correct associated set of ODEs. We demonstrate the theory by constructing a reaction network that implements a neural network with a smoothed ReLU activation function, though we also demonstrate how to generalize the construction to allow for other activation functions (each with the desirable properties listed previously). As there are multiple types of networks utilized in this paper, we also give a careful introduction to both reaction networks and neural networks, in order to disambiguate the overlapping vocabulary in the two settings and to clearly highlight the role of each networks properties.
Koopman operator theory, a powerful framework for discovering the underlying dynamics of nonlinear dynamical systems, was recently shown to be intimately connected with neural network training. In this work, we take the first steps in making use of t
Performing analytical tasks over graph data has become increasingly interesting due to the ubiquity and large availability of relational information. However, unlike images or sentences, there is no notion of sequence in networks. Nodes (and edges) f
Binarized neural networks, or BNNs, show great promise in edge-side applications with resource limited hardware, but raise the concerns of reduced accuracy. Motivated by the complex neural networks, in this paper we introduce complex representation i
We introduce a method to train Quantized Neural Networks (QNNs) --- neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At train-time the quantized weights and activations are used for computing the parame
To reduce random access memory (RAM) requirements and to increase speed of recognition algorithms we consider a weight discretization problem for trained neural networks. We show that an exponential discretization is preferable to a linear discretiza