ترغب بنشر مسار تعليمي؟ اضغط هنا

Monocular Depth Estimation via Listwise Ranking using the Plackett-Luce Model

69   0   0.0 ( 0 )
 نشر من قبل Julian Lienen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In many real-world applications, the relative depth of objects in an image is crucial for scene understanding. Recent approaches mainly tackle the problem of depth prediction in monocular images by treating the problem as a regression task. Yet, being interested in an order relation in the first place, ranking methods suggest themselves as a natural alternative to regression, and indeed, ranking approaches leveraging pairwise comparisons as training information (object A is closer to the camera than B) have shown promising performance on this problem. In this paper, we elaborate on the use of so-called listwise ranking as a generalization of the pairwise approach. Our method is based on the Plackett-Luce (PL) model, a probability distribution on rankings, which we combine with a state-of-the-art neural network architecture and a simple sampling strategy to reduce training complexity. Moreover, taking advantage of the representation of PL as a random utility model, the proposed predictor offers a natural way to recover (shift-invariant) metric depth information from ranking-only data provided at training time. An empirical evaluation on several benchmark datasets in a zero-shot setting demonstrates the effectiveness of our approach compared to existing ranking and regression methods.

قيم البحث

اقرأ أيضاً

The analysis of rank ordered data has a long history in the statistical literature across a diverse range of applications. In this paper we consider the Extended Plackett-Luce model that induces a flexible (discrete) distribution over permutations. T he parameter space of this distribution is a combination of potentially high-dimensional discrete and continuous components and this presents challenges for parameter interpretability and also posterior computation. Particular emphasis is placed on the interpretation of the parameters in terms of observable quantities and we propose a general framework for preserving the mode of the prior predictive distribution. Posterior sampling is achieved using an effective simulation based approach that does not require imposing restrictions on the parameter space. Working in the Bayesian framework permits a natural representation of the posterior predictive distribution and we draw on this distribution to address the rank aggregation problem and also to identify potential lack of model fit. The flexibility of the Extended Plackett-Luce model along with the effectiveness of the proposed sampling scheme are demonstrated using several simulation studies and real data examples.
Recent advances in self-supervised learning havedemonstrated that it is possible to learn accurate monoculardepth reconstruction from raw video data, without using any 3Dground truth for supervision. However, in robotics applications,multiple views o f a scene may or may not be available, depend-ing on the actions of the robot, switching between monocularand multi-view reconstruction. To address this mixed setting,we proposed a new approach that extends any off-the-shelfself-supervised monocular depth reconstruction system to usemore than one image at test time. Our method builds on astandard prior learned to perform monocular reconstruction,but uses self-supervision at test time to further improve thereconstruction accuracy when multiple images are available.When used to update the correct components of the model, thisapproach is highly-effective. On the standard KITTI bench-mark, our self-supervised method consistently outperformsall the previous methods with an average 25% reduction inabsolute error for the three common setups (monocular, stereoand monocular+stereo), and comes very close in accuracy whencompared to the fully-supervised state-of-the-art methods.
Monocular 3D human-pose estimation from static images is a challenging problem, due to the curse of dimensionality and the ill-posed nature of lifting 2D-to-3D. In this paper, we propose a Deep Conditional Variational Autoencoder based model that syn thesizes diverse anatomically plausible 3D-pose samples conditioned on the estimated 2D-pose. We show that CVAE-based 3D-pose sample set is consistent with the 2D-pose and helps tackling the inherent ambiguity in 2D-to-3D lifting. We propose two strategies for obtaining the final 3D pose- (a) depth-ordering/ordinal relations to score and weight-average the candidate 3D-poses, referred to as OrdinalScore, and (b) with supervision from an Oracle. We report close to state of-the-art results on two benchmark datasets using OrdinalScore, and state-of-the-art results using the Oracle. We also show that our pipeline yields competitive results without paired image-to-3D annotations. The training and evaluation code is available at https://github.com/ssfootball04/generative_pose.
112 - Rongrong Ji , Ke Li , Yan Wang 2019
In this paper, we address the problem of monocular depth estimation when only a limited number of training image-depth pairs are available. To achieve a high regression accuracy, the state-of-the-art estimation methods rely on CNNs trained with a lar ge number of image-depth pairs, which are prohibitively costly or even infeasible to acquire. Aiming to break the curse of such expensive data collections, we propose a semi-supervised adversarial learning framework that only utilizes a small number of image-depth pairs in conjunction with a large number of easily-available monocular images to achieve high performance. In particular, we use one generator to regress the depth and two discriminators to evaluate the predicted depth , i.e., one inspects the image-depth pair while the other inspects the depth channel alone. These two discriminators provide their feedbacks to the generator as the loss to generate more realistic and accurate depth predictions. Experiments show that the proposed approach can (1) improve most state-of-the-art models on the NYUD v2 dataset by effectively leveraging additional unlabeled data sources; (2) reach state-of-the-art accuracy when the training set is small, e.g., on the Make3D dataset; (3) adapt well to an unseen new dataset (Make3D in our case) after training on an annotated dataset (KITTI in our case).
We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a cameras aperture as supervision. Prior works use a depth sensors outputs or images of the same scene f rom alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To enable learning algorithms to use aperture effects as supervision, we introduce two differentiable aperture rendering functions that use the input image and predicted depths to simulate the depth-of-field effects caused by real camera apertures. We train a monocular depth estimation network end-to-end to predict the scene depths that best explain these finite aperture images as defocus-blurred renderings of the input all-in-focus image.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا