ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Interaction Detection Using Topological Analysis on Neural Networks

92   0   0.0 ( 0 )
 نشر من قبل Zirui Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Detecting statistical interactions between input features is a crucial and challenging task. Recent advances demonstrate that it is possible to extract learned interactions from trained neural networks. It has also been observed that, in neural networks, any interacting features must follow a strongly weighted connection to common hidden units. Motivated by the observation, in this paper, we propose to investigate the interaction detection problem from a novel topological perspective by analyzing the connectivity in neural networks. Specially, we propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology. Based on this measure, a Persistence Interaction detection~(PID) algorithm is developed to efficiently detect interactions. Our proposed algorithm is evaluated across a number of interaction detection tasks on several synthetic and real world datasets with different hyperparameters. Experimental results validate that the PID algorithm outperforms the state-of-the-art baselines.



قيم البحث

اقرأ أيضاً

Deep neural networks are known to have security issues. One particular threat is the Trojan attack. It occurs when the attackers stealthily manipulate the models behavior through Trojaned training samples, which can later be exploited. Guided by ba sic neuroscientific principles we discover subtle -- yet critical -- structural deviation characterizing Trojaned models. In our analysis we use topological tools. They allow us to model high-order dependencies in the networks, robustly compare different networks, and localize structural abnormalities. One interesting observation is that Trojaned models develop short-cuts from input to output layers. Inspired by these observations, we devise a strategy for robust detection of Trojaned models. Compared to standard baselines it displays better performance on multiple benchmarks.
Sparse neural networks are effective approaches to reduce the resource requirements for the deployment of deep neural networks. Recently, the concept of adaptive sparse connectivity, has emerged to allow training sparse neural networks from scratch b y optimizing the sparse structure during training. However, comparing different sparse topologies and determining how sparse topologies evolve during training, especially for the situation in which the sparse structure optimization is involved, remain as challenging open questions. This comparison becomes increasingly complex as the number of possible topological comparisons increases exponentially with the size of networks. In this work, we introduce an approach to understand and compare sparse neural network topologies from the perspective of graph theory. We first propose Neural Network Sparse Topology Distance (NNSTD) to measure the distance between different sparse neural networks. Further, we demonstrate that sparse neural networks can outperform over-parameterized models in terms of performance, even without any further structure optimization. To the end, we also show that adaptive sparse connectivity can always unveil a plenitude of sparse sub-networks with very different topologies which outperform the dense model, by quantifying and comparing their topological evolutionary processes. The latter findings complement the Lottery Ticket Hypothesis by showing that there is a much more efficient and robust way to find winning tickets. Altogether, our results start enabling a better theoretical understanding of sparse neural networks, and demonstrate the utility of using graph theory to analyze them.
Modern neural networks often contain significantly more parameters than the size of their training data. We show that this excess capacity provides an opportunity for embedding secret machine learning models within a trained neural network. Our novel framework hides the existence of a secret neural network with arbitrary desired functionality within a carrier network. We prove theoretically that the secret networks detection is computationally infeasible and demonstrate empirically that the carrier network does not compromise the secret networks disguise. Our paper introduces a previously unknown steganographic technique that can be exploited by adversaries if left unchecked.
Graph neural networks (GNNs), which learn the representation of a node by aggregating its neighbors, have become an effective computational tool in downstream applications. Over-smoothing is one of the key issues which limit the performance of GNNs a s the number of layers increases. It is because the stacked aggregators would make node representations converge to indistinguishable vectors. Several attempts have been made to tackle the issue by bringing linked node pairs close and unlinked pairs distinct. However, they often ignore the intrinsic community structures and would result in sub-optimal performance. The representations of nodes within the same community/class need be similar to facilitate the classification, while different classes are expected to be separated in embedding space. To bridge the gap, we introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN). It normalizes nodes within the same group independently to increase their smoothness, and separates node distributions among different groups to significantly alleviate the over-smoothing issue. Experiments on real-world datasets demonstrate that DGN makes GNN models more robust to over-smoothing and achieves better performance with deeper GNNs.
Unrolled neural networks emerged recently as an effective model for learning inverse maps appearing in image restoration tasks. However, their generalization risk (i.e., test mean-squared-error) and its link to network design and train sample size re mains mysterious. Leveraging the Steins Unbiased Risk Estimator (SURE), this paper analyzes the generalization risk with its bias and variance components for recurrent unrolled networks. We particularly investigate the degrees-of-freedom (DOF) component of SURE, trace of the end-to-end network Jacobian, to quantify the prediction variance. We prove that DOF is well-approximated by the weighted textit{path sparsity} of the network under incoherence conditions on the trained weights. Empirically, we examine the SURE components as a function of train sample size for both recurrent and non-recurrent (with many more parameters) unrolled networks. Our key observations indicate that: 1) DOF increases with train sample size and converges to the generalization risk for both recurrent and non-recurrent schemes; 2) recurrent network converges significantly faster (with less train samples) compared with non-recurrent scheme, hence recurrence serves as a regularization for low sample size regimes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا