ترغب بنشر مسار تعليمي؟ اضغط هنا

Mathematical properties of nested residues and their application to multi-loop scattering amplitudes

168   0   0.0 ( 0 )
 نشر من قبل Jose De Jesus Aguilera Verdugo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general formal proof for the first time, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in Ref. cite{Verdugo:2020kzh}, encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in Ref. cite{Aguilera-Verdugo:2020kzc}.



قيم البحث

اقرأ أيضاً

In this talk, we review recent developments towards the calculation of multi-loop scattering amplitudes. In particular, we discuss how the colour-kinematics duality can provide new integral relations at one-loop level via the Loop-Tree duality formal ism. On the other hand, in order to compute scattering amplitudes at one- and two-loop level, numerically and analytically, we describe the preliminary automation of the adaptive integrand decomposition algorithm. We show preliminary results on the analytic reduction of the $mu e$-elastic scattering at one- and two-loop level.
We review the current state-of-the-art in integrand level reduction for five-point scattering amplitudes at two loops in QCD. We present some benchmark results for the evaluation of the leading colour two-loop five-gluon amplitudes in the physical re gion as well as the partonic channels for two quarks and three gluons and four quarks and one gluon.
A summary of the calculation of the color-planar and complete light quark contributions to the massive three-loop form factors is presented. Here a novel calculation method for the Feynman integrals is used, solving general uni-variate first order fa ctorizable systems of differential equations. We also present predictions for the asymptotic structure of these form factors.
We explore the relation between resummation and explicit multi-loop calculations for QCD hard-scattering amplitudes. We describe how the factorization properties of amplitudes lead to the exponentiation of double and single poles at each order of per turbation theory. For these amplitudes, previously-observed relations between single and double poles in different 2 to 2 processes can now be interpreted in terms of universal functions associated with external partons and process-dependent anomalous dimensions that describe coherent soft radiation. Catanis proposal for multiple poles in dimensionally-continued amplitudes emerges naturally.
We present the analytic form of all leading-color two-loop five-parton helicity amplitudes in QCD. The results are analytically reconstructed from exact numerical evaluations over finite fields. Combining a judicious choice of variables with a new ap proach to the treatment of particle states in $D$ dimensions for the numerical evaluation of amplitudes, we obtain the analytic expressions with a modest computational effort. Their systematic simplification using multivariate partial-fraction decomposition leads to a particularly compact form. Our results provide all two-loop amplitudes required for the calculation of next-to-next-to-leading order QCD corrections to the production of three jets at hadron colliders in the leading-color approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا