ﻻ يوجد ملخص باللغة العربية
In ionic Raman scattering, infrared-active phonons mediate a scattering process that results in the creation or destruction of a Raman-active phonon. This mechanism relies on nonlinear interactions between phonons and has in recent years been associated with a variety of emergent lattice-driven phenomena in complex transition-metal oxides, but the underlying mechanism is often obscured by the presence of multiple coupled order parameters in play. Here, we use time-resolved spectroscopy to compare coherent phonons generated by ionic Raman scattering with those created by more conventional electronic Raman scattering on the nonmagnetic and non-strongly-correlated wide band-gap insulator LaAlO$_3$. We find that the oscillatory amplitude of the low-frequency Raman-active $E_g$ mode exhibits a sharp peak when we tune our pump frequency into resonance with the high-frequency infrared-active $E_u$ mode, consistent with first-principles calculations. Our results suggest that ionic Raman scattering can strongly dominate electronic Raman scattering in wide band-gap insulating materials. We also see evidence of competing scattering channels at fluences above 28~mJ/cm$^2$ that alter the measured amplitude of the coherent phonon response.
We present a detailed study of the Ti 3$d$ carriers at the interface of LaAlO$_3$/SrTiO$_3$ heterostructures by high-resolution resonant inelastic soft x-ray scattering (RIXS), with special focus on the roles of overlayer thickness and oxygen vacanci
Investigating Shubnikov-de Haas (SdH) oscillations in high magnetic fields, we experimentally infer the electronic band structure of the quasi-two-dimensional electron gas (2DEG) at the ionic-liquid gated amorphous (a)-LaAlO$_3$/KTaO$_3$ interface. T
UV Raman scattering studies show longitudinal optical (LO) mode up to 4th order in wurtzite GaN nanowire system. Frohlich interaction of electron with the long range electrostatic field of ionic bonded GaN gives rise to enhancement in LO phonon modes
The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at