ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilingual Speech Translation with Efficient Finetuning of Pretrained Models

111   0   0.0 ( 0 )
 نشر من قبل Xian Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple yet effective approach to build multilingual speech-to-text (ST) translation by efficient transfer learning from pretrained speech encoder and text decoder. Our key finding is that a minimalistic LNA (LayerNorm and Attention) finetuning can achieve zero-shot crosslingual and cross-modality transfer ability by only finetuning less than 10% of the pretrained parameters. This enables effectively leveraging large pretrained models with low training cost. Using wav2vec 2.0 for acoustic modeling, and mBART for multilingual text generation, our approach advanced the new state-of-the-art for 34 translation directions (and surpassing cascaded ST for 23 of them) on large-scale multilingual ST benchmark CoVoST 2 (+6.4 BLEU on average across 15 En-X directions and +5.1 BLEU on average across 19 X-En directions). Our approach demonstrates strong zero-shot performance in a many-to-many multilingual model (+5.7 BLEU on average across 18 non-English directions), making it an appealing approach for attaining high-quality speech translation with improved parameter and data efficiency.



قيم البحث

اقرأ أيضاً

77 - Mengjie Zhao , Tao Lin , Fei Mi 2020
We present an efficient method of utilizing pretrained language models, where we learn selective binary masks for pretrained weights in lieu of modifying them through finetuning. Extensive evaluations of masking BERT and RoBERTa on a series of NLP ta sks show that our masking scheme yields performance comparable to finetuning, yet has a much smaller memory footprint when several tasks need to be inferred simultaneously. Through intrinsic evaluations, we show that representations computed by masked language models encode information necessary for solving downstream tasks. Analyzing the loss landscape, we show that masking and finetuning produce models that reside in minima that can be connected by a line segment with nearly constant test accuracy. This confirms that masking can be utilized as an efficient alternative to finetuning.
Transformers have outperformed recurrent neural networks (RNNs) in natural language generation. This comes with a significant computational overhead, as the attention mechanism scales with a quadratic complexity in sequence length. Efficient transfor mer variants have received increasing interest from recent works. Among them, a linear-complexity recurrent variant has proven well suited for autoregressive generation. It approximates the softmax attention with randomized or heuristic feature maps, but can be difficult to train or yield suboptimal accuracy. This work aims to convert a pretrained transformer into its efficient recurrent counterpart, improving the efficiency while retaining the accuracy. Specifically, we propose a swap-then-finetune procedure: in an off-the-shelf pretrained transformer, we replace the softmax attention with its linear-complexity recurrent alternative and then finetune. With a learned feature map, our approach provides an improved tradeoff between efficiency and accuracy over the standard transformer and other recurrent variants. We also show that the finetuning process needs lower training cost than training these recurrent variants from scratch. As many recent models for natural language tasks are increasingly dependent on large-scale pretrained transformers, this work presents a viable approach to improving inference efficiency without repeating the expensive pretraining process.
Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as Paris is the capital of [MASK] are used as probes. We translate the establishe d benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERTs performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin.
Previous works mainly focus on improving cross-lingual transfer for NLU tasks with multilingual pretrained encoder (MPE), or improving the translation performance on NMT task with BERT. However, how to improve the cross-lingual transfer of NMT model with multilingual pretrained encoder is under-explored. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with one parallel dataset and an off-the-shelf MPE, then is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. The SixT model leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. The extensive experiments prove that SixT significantly improves the translation quality of the unseen languages. With much less computation cost and training data, our model achieves better performance on many-to-English testsets than CRISS and m2m-100, two strong multilingual NMT baselines.
Adapter modules were recently introduced as an efficient alternative to fine-tuning in NLP. Adapter tuning consists in freezing pretrained parameters of a model and injecting lightweight modules between layers, resulting in the addition of only a sma ll number of task-specific trainable parameters. While adapter tuning was investigated for multilingual neural machine translation, this paper proposes a comprehensive analysis of adapters for multilingual speech translation (ST). Starting from different pre-trained models (a multilingual ST trained on parallel data or a multilingual BART (mBART) trained on non-parallel multilingual data), we show that adapters can be used to: (a) efficiently specialize ST to specific language pairs with a low extra cost in terms of parameters, and (b) transfer from an automatic speech recognition (ASR) task and an mBART pre-trained model to a multilingual ST task. Experiments show that adapter tuning offer competitive results to full fine-tuning, while being much more parameter-efficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا