ترغب بنشر مسار تعليمي؟ اضغط هنا

Deriving Time-varying Cellular Motility Parameters via Wavelet Analysis

47   0   0.0 ( 0 )
 نشر من قبل Yanping Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yanping Liu




اسأل ChatGPT حول البحث

Cell migration is an indispensable physiological and pathological process for normal tissue development and cancer metastasis, which is greatly regulated by intracellular signal pathways and extracellular microenvironment (ECM). However, there is a lack of adequate tools to analyze the time-varying cell migration characteristics because of the effects of some factors, i.e., the ECM including the time-dependent local stiffness due to microstructural remodeling by migrating cells. Here, we develop an approach to derive the time-dependent motility parameters from cellular trajectories, based on the time-varying persistent random walk model. In particular, we employ the wavelet denoising and wavelet transform to investigate cell migration velocities and obtain the wavelet power spectrum. The time-dependent motility parameters are subsequently derived via Lorentzian power spectrum. Our analysis shows that the combination of wavelet denoising, wavelet transform and Lorentzian power spectrum provides a powerful tool to derive accurately the time-dependent motility parameters, which reflects the time-varying microenvironment characteristics to some extent.

قيم البحث

اقرأ أيضاً

How cells sense and respond to mechanical stimuli remains an open question. Recent advances have identified the translocation of Yes-associated protein (YAP) between nucleus and cytoplasm as a central mechanism for sensing mechanical forces and regul ating mechanotransduction. We formulate a spatiotemporal model of the mechanotransduction signalling pathway that includes coupling of YAP with the cell force-generation machinery through the Rho family of GTPases. Considering the active and inactive forms of a single Rho protein (GTP/GDP-bound) and of YAP (non-phosphorylated/phosphorylated), we study the cross-talk between cell polarization due to active Rho and YAP activation through its nuclear localization. For fixed mechanical stimuli, our model predicts stationary nuclear-to-cytoplasmic YAP ratios consistent with experimental data at varying adhesive cell area. We further predict damped and even sustained oscillations in the YAP nuclear-to-cytoplasmic ratio by accounting for recently reported positive and negative YAP-Rho feedback. Extending the framework to time-varying mechanical stimuli that simulate cyclic stretching and compression, we show that the YAP nuclear-to-cytoplasmic ratios time dependence follows that of the cyclic mechanical stimulus. The model presents one of the first frameworks for understanding spatiotemporal YAP mechanotransduction, providing several predictions of possible YAP localization dynamics, and suggesting new directions for experimental and theoretical studies.
We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA) , that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learners concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education.
86 - Yanping Liu 2020
Cell migration, which can be significantly affected by intracellular signaling pathways (ICSP) and extracellular matrix (ECM), plays a crucial role in many physiological and pathological processes. The efficiency of cell migration, which is typically modeled as a persistent random walk (PRW), depends on two critical motility parameters, i.e., migration speed and persistence. It is generally very challenging to efficiently and accurately extract these key dynamics parameters from noisy experimental data. Here, we employ the normalized Shannon entropy to quantify the deviation of cell migration dynamics from that of diffusive/ballistic motion as well as to derive the persistence of cell migration based on the Fourier power spectrum of migration velocities. Moreover, we introduce the time-varying Shannon entropy based on the wavelet power spectrum of cellular dynamics and demonstrate its superior utility to characterize the time-dependent persistence of cell migration, which is typically resulted from complex and time-varying intra or extra-cellular mechanisms. We employ our approach to analyze trajectory data of in vitro cell migration regulated by distinct intracellular and extracellular mechanisms, exhibiting a rich spectrum of dynamic characteristics. Our analysis indicates that the combination of Shannon entropy and wavelet transform offers a simple and efficient tool to estimate the persistence of cell migration, which may also reflect the real-time effects of ICSP-ECM to some extent.
We present a study of the observational properties of Millisecond Pulsars (MSPs) by way of their magnetic fields, spin periods and masses. These measurements are derived through the scenario of Accretion Induced Collapse (AIC) of white dwarfs (WDs) i n stellar binary systems, in order to provide a greater understanding of the characteristics of MSP populations. In addition, we demonstrate a strong evolutionary connection between neutron stars and WDs with binary companions from a stellar binary evolution perspective via the AIC process.
Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates . To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا