ترغب بنشر مسار تعليمي؟ اضغط هنا

Cell Motility Dependence on Adhesive Wetting

80   0   0.0 ( 0 )
 نشر من قبل Yuansheng Cao
 تاريخ النشر 2018
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.

قيم البحث

اقرأ أيضاً

Collective cell migration is crucial in many biological processes such as wound healing, tissue morphogenesis, and tumor progression. The leading front of a collective migrating epithelial cell layer often destabilizes into multicellular finger-like protrusions, each of which is guided by a leader cell at the fingertip. Here, we develop a subcellular-element-based model of this fingering instability, which incorporates leader cells and other related properties of a monolayer of epithelial cells. Our model recovers multiple aspects of the dynamics, especially the traction force patterns and velocity fields, observed in experiments on MDCK cells. Our model predicts the necessity of the leader cell and its minimal functions for the formation and maintenance of a stable finger pattern. Meanwhile, our model allows for an analysis of the role of supra-cellular actin cable on the leading front, predicting that while this observed structure helps maintain the shape of the finger, it is not required in order to form a finger. In addition, we also study the driving instability in the context of continuum active fluid model, which justifies some of our assumptions in the computational approach. In particular, we show that in our model no finger protrusions would emerge in a phenotypically homogenous active fluid and hence the role of the leader cell and its followers are often critical.
In embryonic development, programmed cell shape changes are essential for building functional organs, but in many cases the mechanisms that precisely regulate these changes remain unknown. We propose that fluid-like drag forces generated by the motio n of an organ through surrounding tissue could generate changes to its structure that are important for its function. To test this hypothesis, we study the zebrafish left-right organizer, Kupffers vesicle (KV), using experiments and mathematical modeling. During development, monociliated cells that comprise the KV undergo region-specific shape changes along the anterior-posterior axis that are critical for KV function: anterior cells become long and thin, while posterior cells become short and squat. Here, we develop a mathematical vertex-like model for cell shapes, which incorporates both tissue rheology and cell motility, and constrain the model parameters using previously published rheological data for the zebrafish tailbud [Serwane et al.] as well as our own measurements of the KV speed. We find that drag forces due to dynamics of cells surrounding the KV could be sufficient to drive KV cell shape changes during KV development. More broadly, these results suggest that cell shape changes could be driven by dynamic forces not typically considered in models or experiments.
Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinate it are critically importa nt to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism which differ in the biophysics of the cell-substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment.
Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a population. MreB is necessary for establishment and maintenance of rod shape although the mechanism of shape control remai ns unknown. We perturbed MreB in two complimentary ways to produce steady-state cell diameters over a wide range, from 790+/-30 nm to 1700+/-20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently-tagged MreB polymers with cell diameter by simultaneously analyzing 3-dimensional images of MreB and cell shape. Our results indicate that the pitch angle of MreB inversely correlates with cell diameter. Other correlations are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB dictates cell diameter and organizes cell wall growth to produce a chiral cell wall.
Cellular decision making allows cells to assume functionally different phenotypes in response to microenvironmental cues, without genetic change. It is an open question, how individual cell decisions influence the dynamics at the tissue level. Here, we study spatio-temporal pattern formation in a population of cells exhibiting phenotypic plasticity, which is a paradigm of cell decision making. We focus on the migration/resting and the migration/proliferation plasticity which underly the epithelial-mesenchymal transition (EMT) and the go or grow dichotomy. We assume that cells change their phenotype in order to minimize their microenvironmental entropy (LEUP: Least microEnvironmental Uncertainty Principle) and study the impact of the LEUP-driven migration/resting and migration/proliferation plasticity on the corresponding multicellular spatio-temporal dynamics with a stochastic cell-based mathematical model for the spatio-temporal dynamics of the cell phenotypes. In the case of the go or rest plasticity, a corresponding mean-field approximation allows to identify a bistable switching mechanism between a diffusive (fluid) and an epithelial (solid) tissue phase which depends on the sensitivity of the phenotypes to the environment. For the go or grow plasticity, we show the possibility of Turing pattern formation for the solid tissue phase and its relation with the parameters of the LEUP-driven cell decisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا