ﻻ يوجد ملخص باللغة العربية
Most compilers for machine learning (ML) frameworks need to solve many correlated optimization problems to generate efficient machine code. Current ML compilers rely on heuristics based algorithms to solve these optimization problems one at a time. However, this approach is not only hard to maintain but often leads to sub-optimal solutions especially for newer model architectures. Existing learning based approaches in the literature are sample inefficient, tackle a single optimization problem, and do not generalize to unseen graphs making them infeasible to be deployed in practice. To address these limitations, we propose an end-to-end, transferable deep reinforcement learning method for computational graph optimization (GO), based on a scalable sequential attention mechanism over an inductive graph neural network. GO generates decisions on the entire graph rather than on each individual node autoregressively, drastically speeding up the search compared to prior methods. Moreover, we propose recurrent attention layers to jointly optimize dependent graph optimization tasks and demonstrate 33%-60% speedup on three graph optimization tasks compared to TensorFlow default optimization. On a diverse set of representative graphs consisting of up to 80,000 nodes, including Inception-v3, Transformer-XL, and WaveNet, GO achieves on average 21% improvement over human experts and 18% improvement over the prior state of the art with 15x faster convergence, on a device placement task evaluated in real systems.
This paper considers the problem of efficient exploration of unseen environments, a key challenge in AI. We propose a `learning to explore framework where we learn a policy from a distribution of environments. At test time, presented with an unseen e
Recently, the database management system (DBMS) community has witnessed the power of machine learning (ML) solutions for DBMS tasks. Despite their promising performance, these existing solutions can hardly be considered satisfactory. First, these ML-
Zero-shot and few-shot learning aim to improve generalization to unseen concepts, which are promising in many realistic scenarios. Due to the lack of data in unseen domain, relation modeling between seen and unseen domains is vital for knowledge tran
Traditional maximum entropy and sparsity-based algorithms for analytic continuation often suffer from the ill-posed kernel matrix or demand tremendous computation time for parameter tuning. Here we propose a neural network method by convex optimizati
Learned optimizers are increasingly effective, with performance exceeding that of hand designed optimizers such as Adam~citep{kingma2014adam} on specific tasks citep{metz2019understanding}. Despite the potential gains available, in current work the m