ﻻ يوجد ملخص باللغة العربية
A cornerstone theorem in the Graph Minors series of Robertson and Seymour is the result that every graph $G$ with no minor isomorphic to a fixed graph $H$ has a certain structure. The structure can then be exploited to deduce far-reaching consequences. The exact statement requires some explanation, but roughly it says that there exist integers $k,n$ depending on $H$ only such that $0<k<n$ and for every $ntimes n$ grid minor $J$ of $G$ the graph $G$ has a a $k$-near embedding in a surface $Sigma$ that does not embed $H$ in such a way that a substantial part of $J$ is embedded in $Sigma$. Here a $k$-near embedding means that after deleting at most $k$ vertices the graph can be drawn in $Sigma$ without crossings, except for local areas of non-planarity, where crossings are permitted, but at most $k$ of these areas are attached to the rest of the graph by four or more vertices and inside those the graph is constrained in a different way, again depending on the parameter $k$. The original and only proof so far is quite long and uses many results developed in the Graph Minors series. We give a proof that uses only our earlier paper [A new proof of the flat wall theorem, {it J.~Combin. Theory Ser. B bf 129} (2018), 158--203] and results from graduate textbooks. Our proof is constructive and yields a polynomial time algorithm to construct such a structure. We also give explicit constants for the structure theorem, whereas the original proof only guarantees the existence of such constants.
A class of graphs is $chi$-bounded if there exists a function $f:mathbb Nrightarrow mathbb N$ such that for every graph $G$ in the class and an induced subgraph $H$ of $G$, if $H$ has no clique of size $q+1$, then the chromatic number of $H$ is less
It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have
A graph $G$ is $d$-degenerate if every non-null subgraph of $G$ has a vertex of degree at most $d$. We prove that every $n$-vertex planar graph has a $3$-degenerate induced subgraph of order at least $3n/4$.
A (vertex) $ell$-ranking is a labelling $varphi:V(G)tomathbb{N}$ of the vertices of a graph $G$ with integer colours so that for any path $u_0,ldots,u_p$ of length at most $ell$, $varphi(u_0) eqvarphi(u_p)$ or $varphi(u_0)<max{varphi(u_0),ldots,varph
For a planar graph with a given f-vector $(f_{0}, f_{1}, f_{2}),$ we introduce a cubic polynomial whose coefficients depend on the f-vector. The planar graph is said to be real if all the roots of the corresponding polynomial are real. Thus we have a