ترغب بنشر مسار تعليمي؟ اضغط هنا

The edge-vertex inequality in a planar graph and a bipartition for the class of all planar graphs

76   0   0.0 ( 0 )
 نشر من قبل M. Reza Emamy-Khansary
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a planar graph with a given f-vector $(f_{0}, f_{1}, f_{2}),$ we introduce a cubic polynomial whose coefficients depend on the f-vector. The planar graph is said to be real if all the roots of the corresponding polynomial are real. Thus we have a bipartition of all planar graphs into two disjoint class of graphs, real and complex ones. As a contribution toward a full recognition of planar graphs in this bipartition, we study and recognize completely a subclass of planar graphs that includes all the connected grid subgraphs. Finally, all the 2-connected triangle-free complex planar graphs of 7 vertices are listed.

قيم البحث

اقرأ أيضاً

We initiate a systematic study of the fractional vertex-arboricity of planar graphs and demonstrate connections to open problems concerning both fractional coloring and the size of the largest induced forest in planar graphs. In particular, the follo wing three long-standing conjectures concern the size of a largest induced forest in a planar graph, and we conjecture that each of these can be generalized to the setting of fractional vertex-arboricity. In 1979, Albertson and Berman conjectured that every planar graph has an induced forest on at least half of its vertices, in 1987, Akiyama and Watanabe conjectured that every bipartite planar graph has an induced forest on at least five-eighths of its vertices, and in 2010, Kowalik, Luv{z}ar, and v{S}krekovski conjectured that every planar graph of girth at least five has an induced forest on at least seven-tenths of its vertices. We make progress toward the fractional generalization of the latter of these, by proving that every planar graph of girth at least five has fractional vertex-arboricity at most $2 - 1/324$.
A (vertex) $ell$-ranking is a labelling $varphi:V(G)tomathbb{N}$ of the vertices of a graph $G$ with integer colours so that for any path $u_0,ldots,u_p$ of length at most $ell$, $varphi(u_0) eqvarphi(u_p)$ or $varphi(u_0)<max{varphi(u_0),ldots,varph i(u_p)}$. We show that, for any fixed integer $ellge 2$, every $n$-vertex planar graph has an $ell$-ranking using $O(log n/logloglog n)$ colours and this is tight even when $ell=2$; for infinitely many values of $n$, there are $n$-vertex planar graphs, for which any 2-ranking requires $Omega(log n/logloglog n)$ colours. This result also extends to bounded genus graphs. In developing this proof we obtain optimal bounds on the number of colours needed for $ell$-ranking graphs of treewidth $t$ and graphs of simple treewidth $t$. These upper bounds are constructive and give $O(nlog n)$-time algorithms. Additional results that come from our techniques include new sublogarithmic upper bounds on the number of colours needed for $ell$-rankings of apex minor-free graphs and $k$-planar graphs.
A graph $G$ is emph{uniquely k-colorable} if the chromatic number of $G$ is $k$ and $G$ has only one $k$-coloring up to permutation of the colors. A uniquely $k$-colorable graph $G$ is edge-critical if $G-e$ is not a uniquely $k$-colorable graph for any edge $ein E(G)$. Melnikov and Steinberg [L. S. Melnikov, R. Steinberg, One counterexample for two conjectures on three coloring, Discrete Math. 20 (1977) 203-206] asked to find an exact upper bound for the number of edges in a edge-critical 3-colorable planar graph with $n$ vertices. In this paper, we give some properties of edge-critical uniquely 3-colorable planar graphs and prove that if $G$ is such a graph with $n(geq6)$ vertices, then $|E(G)|leq frac{5}{2}n-6 $, which improves the upper bound $frac{8}{3}n-frac{17}{3}$ given by Matsumoto [N. Matsumoto, The size of edge-critical uniquely 3-colorable planar graphs, Electron. J. Combin. 20 (3) (2013) $#$P49]. Furthermore, we find some edge-critical 3-colorable planar graphs which have $n(=10,12, 14)$ vertices and $frac{5}{2}n-7$ edges.
A cornerstone theorem in the Graph Minors series of Robertson and Seymour is the result that every graph $G$ with no minor isomorphic to a fixed graph $H$ has a certain structure. The structure can then be exploited to deduce far-reaching consequence s. The exact statement requires some explanation, but roughly it says that there exist integers $k,n$ depending on $H$ only such that $0<k<n$ and for every $ntimes n$ grid minor $J$ of $G$ the graph $G$ has a a $k$-near embedding in a surface $Sigma$ that does not embed $H$ in such a way that a substantial part of $J$ is embedded in $Sigma$. Here a $k$-near embedding means that after deleting at most $k$ vertices the graph can be drawn in $Sigma$ without crossings, except for local areas of non-planarity, where crossings are permitted, but at most $k$ of these areas are attached to the rest of the graph by four or more vertices and inside those the graph is constrained in a different way, again depending on the parameter $k$. The original and only proof so far is quite long and uses many results developed in the Graph Minors series. We give a proof that uses only our earlier paper [A new proof of the flat wall theorem, {it J.~Combin. Theory Ser. B bf 129} (2018), 158--203] and results from graduate textbooks. Our proof is constructive and yields a polynomial time algorithm to construct such a structure. We also give explicit constants for the structure theorem, whereas the original proof only guarantees the existence of such constants.
For a fixed planar graph $H$, let $operatorname{mathbf{N}}_{mathcal{P}}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In the case when $H$ is a cycle, the asymptotic value of $operatorname{mathbf{N}}_{mathcal{P}}(n,C _m)$ is currently known for $min{3,4,5,6,8}$. In this note, we extend this list by establishing $operatorname{mathbf{N}}_{mathcal{P}}(n,C_{10})sim(n/5)^5$ and $operatorname{mathbf{N}}_{mathcal{P}}(n,C_{12})sim(n/6)^6$. We prove this by answering the following question for $min{5,6}$, which is interesting in its own right: which probability mass $mu$ on the edges of some clique maximizes the probability that $m$ independent samples from $mu$ form an $m$-cycle?
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا