ترغب بنشر مسار تعليمي؟ اضغط هنا

RSKDD-Net: Random Sample-based Keypoint Detector and Descriptor

198   0   0.0 ( 0 )
 نشر من قبل Fan Lu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Keypoint detector and descriptor are two main components of point cloud registration. Previous learning-based keypoint detectors rely on saliency estimation for each point or farthest point sample (FPS) for candidate points selection, which are inefficient and not applicable in large scale scenes. This paper proposes Random Sample-based Keypoint Detector and Descriptor Network (RSKDD-Net) for large scale point cloud registration. The key idea is using random sampling to efficiently select candidate points and using a learning-based method to jointly generate keypoints and descriptors. To tackle the information loss of random sampling, we exploit a novel random dilation cluster strategy to enlarge the receptive field of each sampled point and an attention mechanism to aggregate the positions and features of neighbor points. Furthermore, we propose a matching loss to train the descriptor in a weakly supervised manner. Extensive experiments on two large scale outdoor LiDAR datasets show that the proposed RSKDD-Net achieves state-of-the-art performance with more than 15 times faster than existing methods. Our code is available at https://github.com/ispc-lab/RSKDD-Net.



قيم البحث

اقرأ أيضاً

80 - Xun Yuan , Ke Hu , 2020
The local feature detector and descriptor are essential in many computer vision tasks, such as SLAM and 3D reconstruction. In this paper, we introduce two separate CNNs, lightweight SobelNet and DesNet, to detect key points and to compute dense local descriptors. The detector and the descriptor work in parallel. Sobel filter provides the edge structure of the input images as the input of CNN. The locations of key points will be obtained after exerting the non-maximum suppression (NMS) process on the output map of the CNN. We design Gaussian loss for the training process of SobelNet to detect corner points as keypoints. At the same time, the input of DesNet is the original grayscale image, and circle loss is used to train DesNet. Besides, output maps of SobelNet are needed while training DesNet. We have evaluated our method on several benchmarks including HPatches benchmark, ETH benchmark, and FM-Bench. SobelNet achieves better or comparable performance with less computation compared with SOTA methods in recent years. The inference time of an image of 640x480 is 7.59ms and 1.09ms for SobelNet and DesNet respectively on RTX 2070 SUPER.
We present the novel Efficient Line Segment Detector and Descriptor (ELSD) to simultaneously detect line segments and extract their descriptors in an image. Unlike the traditional pipelines that conduct detection and description separately, ELSD util izes a shared feature extractor for both detection and description, to provide the essential line features to the higher-level tasks like SLAM and image matching in real time. First, we design the one-stage compact model, and propose to use the mid-point, angle and length as the minimal representation of line segment, which also guarantees the center-symmetry. The non-centerness suppression is proposed to filter out the fragmented line segments caused by lines intersections. The fine offset prediction is designed to refine the mid-point localization. Second, the line descriptor branch is integrated with the detector branch, and the two branches are jointly trained in an end-to-end manner. In the experiments, the proposed ELSD achieves the state-of-the-art performance on the Wireframe dataset and YorkUrban dataset, in both accuracy and efficiency. The line description ability of ELSD also outperforms the previous works on the line matching task.
Detecting aligned 3D keypoints is essential under many scenarios such as object tracking, shape retrieval and robotics. However, it is generally hard to prepare a high-quality dataset for all types of objects due to the ambiguity of keypoint itself. Meanwhile, current unsupervised detectors are unable to generate aligned keypoints with good coverage. In this paper, we propose an unsupervised aligned keypoint detector, Skeleton Merger, which utilizes skeletons to reconstruct objects. It is based on an Autoencoder architecture. The encoder proposes keypoints and predicts activation strengths of edges between keypoints. The decoder performs uniform sampling on the skeleton and refines it into small point clouds with pointwise offsets. Then the activation strengths are applied and the sub-clouds are merged. Composite Chamfer Distance (CCD) is proposed as a distance between the input point cloud and the reconstruction composed of sub-clouds masked by activation strengths. We demonstrate that Skeleton Merger is capable of detecting semantically-rich salient keypoints with good alignment, and shows comparable performance to supervised methods on the KeypointNet dataset. It is also shown that the detector is robust to noise and subsampling. Our code is available at https://github.com/eliphatfs/SkeletonMerger.
Detection and description of keypoints from an image is a well-studied problem in Computer Vision. Some methods like SIFT, SURF or ORB are computationally really efficient. This paper proposes a solution for a particular case study on object recognit ion of industrial parts based on hierarchical classification. Reducing the number of instances leads to better performance, indeed, that is what the use of the hierarchical classification is looking for. We demonstrate that this method performs better than using just one method like ORB, SIFT or FREAK, despite being fairly slower.
This paper introduces a new real-time object detection approach named Yes-Net. It realizes the prediction of bounding boxes and class via single neural network like YOLOv2 and SSD, but owns more efficient and outstanding features. It combines local i nformation with global information by adding the RNN architecture as a packed unit in CNN model to form the basic feature extractor. Independent anchor boxes coming from full-dimension k-means is also applied in Yes-Net, it brings better average IOU than grid anchor box. In addition, instead of NMS, Yes-Net uses RNN as a filter to get the final boxes, which is more efficient. For 416 x 416 input, Yes-Net achieves 79.2% mAP on VOC2007 test at 39 FPS on an Nvidia Titan X Pascal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا