ﻻ يوجد ملخص باللغة العربية
We have developed a sensor system based on an optical photon-counting imager with high timing resolution, aiming for highly time-variable astronomical phenomena. The detector is a monolithic Geiger-mode avalanche photodiode array customized in a Multi-Pixel Photon Counter with a response time on the order of nanoseconds. This paper evaluates the basic performance of the sensor and confirms the gain linearity, uniformity, and low dark count. We demonstrate the systems ability to detect the period of a flashing LED, using a data acquisition system developed to obtain the light curve with a time bin of 100 microseconds. The Crab pulsar was observed using a 35-cm telescope without cooling, and the equipment detected optical pulses with a period consistent with the data from the radio ephemeris. Although improvements to the system will be necessary for more reliability, the system has been proven to be a promising device for exploring the time-domain optical astronomy.
The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescop
We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station.
We describe the current status and the prospect for the development of monolithic Ge:Ga array detector for SAFARI. Our goal is to develop a 64x64 array for the 45 -- 110 um band, on the basis of existing technologies to make 3x20 monolithic arrays fo
We implement an electron avalanche photodiode (e-APD) in the MIRC-X instrument, upgrade of the 6-telescope near-infrared imager MIRC, at the CHARA array. This technology should improve the sensitivity of near-infrared interferometry. We first used th
The Keck Planet Imager and Characterizer comprises of a series of upgrades to the Keck II adaptive optics system and instrument suite to improve the direct imaging and high resolution spectroscopy capabilities of the facility instruments NIRC2 and NI