ﻻ يوجد ملخص باللغة العربية
In this article we review the case for a light ($< m_{h_{125}}/2$) neutralino and sneutrino being a viable Dark Matter (DM) candidate in Supersymmetry(SUSY). To that end we recapitulate, very briefly, three issues related to the DM which impact the discussions : calculation of DM relic density, detection of the DM in Direct and Indirect experiments and creation /detection at the Colliders. In case of SUSY, the results from Higgs and SUSY searches at the colliders also have implications for the DM mass and couplings. In view of the constraints coming from all these sources, the possibility of a light neutralino is all but ruled out for the constrained MSSM : cMSSM. The pMSSM, where the gaugino masses are not related at high scale, is also quite constrained and under tension in case of thermal DM and will be put to very stern test in the near future in Direct Detection (DD) experiments as well as by the LHC analyses. However in the pMSSM with modified cosmology and hence non-thermal DM or in the NMSSM, a light neutralino is much more easily accommodated. A light RH sneutrino is also still a viable DM candidate although it requires extending the MSSM with additional singlet neutrino superfields. All of these possibilities can be indeed tested jointly in the upcoming SUSY-electroweakino and Higgs searches at the HL/HE luminosity LHC, the upcoming experiments for the Direct Detection (DD) and indirect detection for the DM as well as the high precision electron-positron colliders under planning.
We study the neutralino sector of the Minimal Non-minimal Supersymmetric Standard Model (MNSSM) where the $mu$ problem of the Minimal Supersymmetric Standard Model (MSSM) is solved without accompanying problems related with the appearance of domain w
We provide a comparison of the results of four SUSY mass spectrum calculations in mSUGRA: Isajet, SuSpect, SoftSusy, and SPheno. In particular, we focus on the high tan(beta) and focus point regions, where the differences in the results are known to be large.
Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for supersymmetry is one of the main aims of the Large Hadron Collider. The other possible manifestation of supersymmetry is the Dar
We show that in supersymmetric left-right models (SUSYLR), the upper bound on the lightest neutral Higgs mass can be appreciably higher than that in minimal supersymmetric standard model (MSSM). The exact magnitude of the bound depends on the scale o
We describe a kinematic method which is capable of determining the overall mass scale in SUSY-like events at a hadron collider with two missing (dark matter) particles. We focus on the kinematic topology in which a pair of identical particles is prod