ترغب بنشر مسار تعليمي؟ اضغط هنا

On a Guided Nonnegative Matrix Factorization

84   0   0.0 ( 0 )
 نشر من قبل Jamie Haddock
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fully unsupervised topic models have found fantastic success in document clustering and classification. However, these models often suffer from the tendency to learn less-than-meaningful or even redundant topics when the data is biased towards a set of features. For this reason, we propose an approach based upon the nonnegative matrix factorization (NMF) model, deemed textit{Guided NMF}, that incorporates user-designed seed word supervision. Our experimental results demonstrate the promise of this model and illustrate that it is competitive with other methods of this ilk with only very little supervision information.



قيم البحث

اقرأ أيضاً

We present a general-purpose data compression algorithm, Regularized L21 Semi-NonNegative Matrix Factorization (L21 SNF). L21 SNF provides robust, parts-based compression applicable to mixed-sign data for which high fidelity, individualdata point rec onstruction is paramount. We derive a rigorous proof of convergenceof our algorithm. Through experiments, we show the use-case advantages presentedby L21 SNF, including application to the compression of highly overdeterminedsystems encountered broadly across many general machine learning processes.
183 - Jim Jing-Yan Wang , Xin Gao 2014
Inthischapterwediscusshowtolearnanoptimalmanifoldpresentationto regularize nonegative matrix factorization (NMF) for data representation problems. NMF,whichtriestorepresentanonnegativedatamatrixasaproductoftwolowrank nonnegative matrices, has been a popular method for data representation due to its ability to explore the latent part-based structure of data. Recent study shows that lots of data distributions have manifold structures, and we should respect the manifold structure when the data are represented. Recently, manifold regularized NMF used a nearest neighbor graph to regulate the learning of factorization parameter matrices and has shown its advantage over traditional NMF methods for data representation problems. However, how to construct an optimal graph to present the manifold prop- erly remains a difficultproblem due to the graph modelselection, noisy features, and nonlinear distributed data. In this chapter, we introduce three effective methods to solve these problems of graph construction for manifold regularized NMF. Multiple graph learning is proposed to solve the problem of graph model selection, adaptive graph learning via feature selection is proposed to solve the problem of constructing a graph from noisy features, while multi-kernel learning-based graph construction is used to solve the problem of learning a graph from nonlinearly distributed data.
76 - Zhihui Zhu , Xiao Li , Kai Liu 2018
Symmetric nonnegative matrix factorization (NMF), a special but important class of the general NMF, is demonstrated to be useful for data analysis and in particular for various clustering tasks. Unfortunately, designing fast algorithms for Symmetric NMF is not as easy as for the nonsymmetric counterpart, the latter admitting the splitting property that allows efficient alternating-type algorithms. To overcome this issue, we transfer the symmetric NMF to a nonsymmetric one, then we can adopt the idea from the state-of-the-art algorithms for nonsymmetric NMF to design fast algorithms solving symmetric NMF. We rigorously establish that solving nonsymmetric reformulation returns a solution for symmetric NMF and then apply fast alternating based algorithms for the corresponding reformulated problem. Furthermore, we show these fast algorithms admit strong convergence guarantee in the sense that the generated sequence is convergent at least at a sublinear rate and it converges globally to a critical point of the symmetric NMF. We conduct experiments on both synthetic data and image clustering to support our result.
In the Nonnegative Matrix Factorization (NMF) problem we are given an $n times m$ nonnegative matrix $M$ and an integer $r > 0$. Our goal is to express $M$ as $A W$ where $A$ and $W$ are nonnegative matrices of size $n times r$ and $r times m$ respec tively. In some applications, it makes sense to ask instead for the product $AW$ to approximate $M$ -- i.e. (approximately) minimize $ orm{M - AW}_F$ where $ orm{}_F$ denotes the Frobenius norm; we refer to this as Approximate NMF. This problem has a rich history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In the past decade NMF has become enormously popular in machine learning, where $A$ and $W$ are computed using a variety of local search heuristics. Vavasis proved that this problem is NP-complete. We initiate a study of when this problem is solvable in polynomial time: 1. We give a polynomial-time algorithm for exact and approximate NMF for every constant $r$. Indeed NMF is most interesting in applications precisely when $r$ is small. 2. We complement this with a hardness result, that if exact NMF can be solved in time $(nm)^{o(r)}$, 3-SAT has a sub-exponential time algorithm. This rules out substantial improvements to the above algorithm. 3. We give an algorithm that runs in time polynomial in $n$, $m$ and $r$ under the separablity condition identified by Donoho and Stodden in 2003. The algorithm may be practical since it is simple and noise tolerant (under benign assumptions). Separability is believed to hold in many practical settings. To the best of our knowledge, this last result is the first example of a polynomial-time algorithm that provably works under a non-trivial condition on the input and we believe that this will be an interesting and important direction for future work.
145 - Stephen A. Vavasis 2007
Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establ ish several results about exact NMF: (1) that it is equivalent to a problem in polyhedral combinatorics; (2) that it is NP-hard; and (3) that a polynomial-time local search heuristic exists.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا