ﻻ يوجد ملخص باللغة العربية
We consider Gibbs distributions on permutations of a locally finite infinite set $Xsubsetmathbb{R}$, where a permutation $sigma$ of $X$ is assigned (formal) energy $sum_{xin X}V(sigma(x)-x)$. This is motivated by Feynmans path representation of the quantum Bose gas; the choice $X:=mathbb{Z}$ and $V(x):=alpha x^2$ is of principal interest. Under suitable regularity conditions on the set $X$ and the potential $V$, we establish existence and a full classification of the infinite-volume Gibbs measures for this problem, including a result on the number of infinite cycles of typical permutations. Unlike earlier results, our conclusions are not limited to small densities and/or high temperatures.
This paper has been withdrawn by the authors due to an error in the main theorem.
We consider the discrete Gaussian Free Field (DGFF) in scaled-up (square-lattic
The gamma kernels are a family of projection kernels $K^{(z,z)}=K^{(z,z)}(x,y)$ on a doubly infinite $1$-dimensional lattice. They are expressed through Eulers gamma function and depend on two continuous parameters $z,z$. The gamma kernels initially
We show that nontrivial bi-infinite polymer Gibbs measures do not exist in typical environments in the inverse-gamma (or log-gamma) directed polymer model on the planar square lattice. The precise technical result is that, except for measures support
We define a potential-weighted connective constant that measures the effective strength of a repulsive pair potential of a Gibbs point process modulated by the geometry of the underlying space. We then show that this definition leads to improved boun