ترغب بنشر مسار تعليمي؟ اضغط هنا

Some explicit and unconditional results on gaps between zeroes of the Riemann zeta-function

111   0   0.0 ( 0 )
 نشر من قبل Timothy Trudgian
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We make explicit an argument of Heath-Brown concerning large and small gaps between nontrivial zeroes of the Riemann zeta-function, $zeta(s)$. In particular, we provide the first unconditional results on gaps (large and small) which hold for a positive proportion of zeroes. To do this we prove explicit bounds on the second and fourth power moments of $S(t+h)-S(t)$, where $S(t)$ denotes the argument of $zeta(s)$ on the critical line and $h ll 1 / log T$. We also use these moments to prove explicit results on the density of the nontrivial zeroes of $zeta(s)$ of a given multiplicity.



قيم البحث

اقرأ أيضاً

167 - A. S. Fokas , J. Lenells 2012
We present several formulae for the large $t$ asymptotics of the Riemann zeta function $zeta(s)$, $s=sigma+i t$, $0leq sigma leq 1$, $t>0$, which are valid to all orders. A particular case of these results coincides with the classical results of Sieg el. Using these formulae, we derive explicit representations for the sum $sum_a^b n^{-s}$ for certain ranges of $a$ and $b$. In addition, we present precise estimates relating this sum with the sum $sum_c^d n^{s-1}$ for certain ranges of $a, b, c, d$. We also study a two-parameter generalization of the Riemann zeta function which we denote by $Phi(u,v,beta)$, $uin mathbb{C}$, $vin mathbb{C}$, $beta in mathbb{R}$. Generalizing the methodology used in the study of $zeta(s)$, we derive asymptotic formulae for $Phi(u,v,beta)$.
59 - Richard P. Brent 2021
A recent paper by Agelas [Generalized Riemann Hypothesis, 2019, hal-00747680v3] claims to prove the Generalized Riemann Hypothesis (GRH) and, as a special case, the Riemann Hypothesis (RH). We show that the proof given by Agelas contains an error. In particular, Lemma 2.3 of Agelas is false. This Lemma 2.3 is a generalisation of Theorem 1 of Vassilev-Missana [A note on prime zeta function and Riemann zeta function, Notes on Number Theory and Discrete Mathematics, 22, 4 (2016), 12-15]. We show by several independent methods that Theorem 1 of Vassilev-Missana is false. We also show that Theorem 2 of Vassilev-Missana is false. This note has two aims. The first aim is to alert other researchers to these errors so they do not rely on faulty results in their own work. The second aim is pedagogical - we hope to show how these errors could have been detected earlier, which may suggest how similar errors can be avoided, or at least detected at an early stage.
We compute the asymptotics of the fourth moment of the Riemann zeta function times an arbitrary Dirichlet polynomial of length $T^{{1/11} - epsilon}$
We show that as $Tto infty$, for all $tin [T,2T]$ outside of a set of measure $mathrm{o}(T)$, $$ int_{-(log T)^{theta}}^{(log T)^{theta}} |zeta(tfrac 12 + mathrm{i} t + mathrm{i} h)|^{beta} mathrm{d} h = (log T)^{f_{theta}(beta) + mathrm{o}(1)}, $$ f or some explicit exponent $f_{theta}(beta)$, where $theta > -1$ and $beta > 0$. This proves an extended version of a conjecture of Fyodorov and Keating (2014). In particular, it shows that, for all $theta > -1$, the moments exhibit a phase transition at a critical exponent $beta_c(theta)$, below which $f_theta(beta)$ is quadratic and above which $f_theta(beta)$ is linear. The form of the exponent $f_theta$ also differs between mesoscopic intervals ($-1<theta<0$) and macroscopic intervals ($theta>0$), a phenomenon that stems from an approximate tree structure for the correlations of zeta. We also prove that, for all $tin [T,2T]$ outside a set of measure $mathrm{o}(T)$, $$ max_{|h| leq (log T)^{theta}} |zeta(tfrac{1}{2} + mathrm{i} t + mathrm{i} h)| = (log T)^{m(theta) + mathrm{o}(1)}, $$ for some explicit $m(theta)$. This generalizes earlier results of Najnudel (2018) and Arguin et al. (2019) for $theta = 0$. The proofs are unconditional, except for the upper bounds when $theta > 3$, where the Riemann hypothesis is assumed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا