ﻻ يوجد ملخص باللغة العربية
We present several formulae for the large $t$ asymptotics of the Riemann zeta function $zeta(s)$, $s=sigma+i t$, $0leq sigma leq 1$, $t>0$, which are valid to all orders. A particular case of these results coincides with the classical results of Siegel. Using these formulae, we derive explicit representations for the sum $sum_a^b n^{-s}$ for certain ranges of $a$ and $b$. In addition, we present precise estimates relating this sum with the sum $sum_c^d n^{s-1}$ for certain ranges of $a, b, c, d$. We also study a two-parameter generalization of the Riemann zeta function which we denote by $Phi(u,v,beta)$, $uin mathbb{C}$, $vin mathbb{C}$, $beta in mathbb{R}$. Generalizing the methodology used in the study of $zeta(s)$, we derive asymptotic formulae for $Phi(u,v,beta)$.
We compute the asymptotics of the fourth moment of the Riemann zeta function times an arbitrary Dirichlet polynomial of length $T^{{1/11} - epsilon}$
In 2008 I thought I found a proof of the Riemann Hypothesis, but there was an error. In the Spring 2020 I believed to have fixed the error, but it cannot be fixed. I describe here where the error was. It took me several days to find the error in a ca
We show that as $Tto infty$, for all $tin [T,2T]$ outside of a set of measure $mathrm{o}(T)$, $$ int_{-(log T)^{theta}}^{(log T)^{theta}} |zeta(tfrac 12 + mathrm{i} t + mathrm{i} h)|^{beta} mathrm{d} h = (log T)^{f_{theta}(beta) + mathrm{o}(1)}, $$ f
We establish in this paper sharp lower bounds for the $2k$-th moment of the derivative of the Riemann zeta function on the critical line for all real $k geq 0$.
We use a spectral theory perspective to reconsider properties of the Riemann zeta function. In particular, new integral representations are derived and used to present its value at odd positive integers.