ﻻ يوجد ملخص باللغة العربية
We present rest-frame optical spectroscopic observations of 24 Hot Dust-Obscured Galaxies (Hot DOGs) at redshifts 1.7-4.6 with KECK/NIRES. Our targets are selected based on their extreme red colors to be the highest luminosity sources from the WISE infrared survey. In 20 sources with well-detected emission we fit the key [O III], H$beta$, H$alpha$, [N II], and [S II] diagnostic lines to constrain physical conditions. Of the 17 targets with a clear detection of the [O III]$rm lambda$5007A emission line, 15 display broad blueshifted and asymmetric line profiles, with widths ranging from 1000 to 8000 $rm km s^{-1}$ and blueshifts up to 3000 $rm km s^{-1}$. These kinematics provide strong evidence for the presence of massive ionized outflows of up to $8000 rm M_odot yr^{-1}$, with a median of $150 rm M_odot yr^{-1}$. As many as eight sources show optical emission line ratios consistent with vigorous star formation. Balmer line star-formation rates, uncorrected for reddening, range from 30--1300 $rm M_odot yr^{-1}$, with a median of $50 rm M_odot yr^{-1}$. Estimates of the SFR from SED fitting of mid and far-infrared photometry suggest significantly higher values. We estimate the central black hole masses to be of order $10^{8-10}rm M_odot$, assuming the present-day $rm M_{BH}-sigma_*$ relation. The bolometric luminosities and the estimated masses of the central black holes of these galaxies suggest that many of the AGN-dominated Hot DOGs are accreting at or above their Eddington limit. The combination of ongoing star formation, massive outflows, and high Eddington ratios suggest Hot DOGs are a transitional phase in galaxy evolution.
Hot Dust-Obscured Galaxies (Hot DOGs) are among the most luminous galaxies in the Universe. Powered by highly obscured, possibly Compton-thick, active galactic nuclei (AGNs), Hot DOGs are characterized by SEDs that are very red in the mid-IR yet domi
We present VLT/XSHOOTER rest-frame UV-optical spectra of 10 Hot Dust-Obscured Galaxies (Hot DOGs) at $zsim2$ to investigate AGN diagnostics and to assess the presence and effect of ionized gas outflows. Most Hot DOGs in this sample are narrow-line do
In this paper we present the detection of H2O and OH+ emission in z>3 hot dust-obscured galaxies (Hot DOGs). Using ALMA Band-6 observations of two Hot DOGs, we have detected H2O(2_02-1_11) in W0149+2350, and H2O(3_12-3_03) and the multiplet OH+(1_1-0
WISE has discovered an extraordinary population of hyper-luminous dusty galaxies which are faint in the two bluer passbands ($3.4, mu$m and $4.6, mu$m) but are bright in the two redder passbands of WISE ($12, mu$m and $22, mu$m). We report on initial
Hot Dust-Obscured Galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the WISE mission from their very red mid-IR colors, and characterized by hot dust temperatures ($T>60~rm K$). Several studies have shown clear ev