ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Classification and Ionized Gas Outflows in $zsim2$ WISE-Selected Hot Dust-Obscured Galaxies

150   0   0.0 ( 0 )
 نشر من قبل Hyunsung D. Jun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present VLT/XSHOOTER rest-frame UV-optical spectra of 10 Hot Dust-Obscured Galaxies (Hot DOGs) at $zsim2$ to investigate AGN diagnostics and to assess the presence and effect of ionized gas outflows. Most Hot DOGs in this sample are narrow-line dominated AGN (type 1.8 or higher), and have higher Balmer decrements than typical type 2 quasars. Almost all (8/9) sources show evidence for ionized gas outflows in the form of broad and blueshifted [O III] profiles, and some sources have such profiles in H$alpha$ (5/7) or [O II] (3/6). Combined with the literature, these results support additional sources of obscuration beyond the simple torus invoked by AGN unification models. Outflow rates derived from the broad [O III] line ($rm gtrsim10^{3},M_{odot},yr^{-1}$) are greater than the black hole accretion and star formation rates, with feedback efficiencies ($sim0.1-1%$) consistent with negative feedback to the host galaxys star formation in merger-driven quasar activity scenarios. We find the broad emission lines in luminous, obscured quasars are often better explained by outflows within the narrow line region, and caution that black hole mass estimates for such sources in the literature may have substantial uncertainty. Regardless, we find lower bounds on the Eddington ratio for Hot DOGs near unity.

قيم البحث

اقرأ أيضاً

497 - Luke Finnerty 2020
We present rest-frame optical spectroscopic observations of 24 Hot Dust-Obscured Galaxies (Hot DOGs) at redshifts 1.7-4.6 with KECK/NIRES. Our targets are selected based on their extreme red colors to be the highest luminosity sources from the WISE i nfrared survey. In 20 sources with well-detected emission we fit the key [O III], H$beta$, H$alpha$, [N II], and [S II] diagnostic lines to constrain physical conditions. Of the 17 targets with a clear detection of the [O III]$rm lambda$5007A emission line, 15 display broad blueshifted and asymmetric line profiles, with widths ranging from 1000 to 8000 $rm km s^{-1}$ and blueshifts up to 3000 $rm km s^{-1}$. These kinematics provide strong evidence for the presence of massive ionized outflows of up to $8000 rm M_odot yr^{-1}$, with a median of $150 rm M_odot yr^{-1}$. As many as eight sources show optical emission line ratios consistent with vigorous star formation. Balmer line star-formation rates, uncorrected for reddening, range from 30--1300 $rm M_odot yr^{-1}$, with a median of $50 rm M_odot yr^{-1}$. Estimates of the SFR from SED fitting of mid and far-infrared photometry suggest significantly higher values. We estimate the central black hole masses to be of order $10^{8-10}rm M_odot$, assuming the present-day $rm M_{BH}-sigma_*$ relation. The bolometric luminosities and the estimated masses of the central black holes of these galaxies suggest that many of the AGN-dominated Hot DOGs are accreting at or above their Eddington limit. The combination of ongoing star formation, massive outflows, and high Eddington ratios suggest Hot DOGs are a transitional phase in galaxy evolution.
The WISE mission has unveiled a rare population of high-redshift ($z=1-4.6$), dusty, hyper-luminous galaxies, with infrared luminosities $L_{rm IR} > 10^{13}~L_{odot}$, and sometimes exceeding $10^{14}~L_{odot}$. Previous work has shown that their du st temperatures and overall far-IR SEDs are significantly hotter than expected for star-formation. We present here an analysis of the rest-frame optical through mid-IR SEDs for a large sample of these so-called Hot, Dust-Obscured Galaxies (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured AGN that dominates the rest-frame emission at $lambda > 1murm m$ and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as $10^{11}-10^{12}~M_{odot}$, the AGN emission, with luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This is inconsistent with the trend of a diminishing fraction of obscured objects with increasing luminosity found for less luminous QSOs, possibly indicating a reversal in this relation at high luminosity, and that Hot DOGs are not the torus-obscured counterparts of the known optically selected, largely unobscured Hyper-Luminous QSOs. Hot DOGs may represent a different type of galaxy and thus a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and show that these objects are in regions as dense as those of known high-redshift proto-clusters.(Abridged)
Hot Dust-Obscured Galaxies (Hot DOGs) are among the most luminous galaxies in the Universe. Powered by highly obscured, possibly Compton-thick, active galactic nuclei (AGNs), Hot DOGs are characterized by SEDs that are very red in the mid-IR yet domi nated by the host galaxy stellar emission in the UV and optical. An earlier study identified a sub-sample of Hot DOGs with significantly enhanced UV emission. One target, W0204-0506, was studied in detail and, based on Chandra observations, it was concluded that the enhanced emission was most likely due to either extreme unobscured star-formation (${rm SFR}>1000~M_{odot}~rm yr^{-1}$) or to light from the highly obscured AGN scattered by gas or dust into our line of sight. Here, we present a follow-up study of W0204-0506 as well as two more Hot DOGs with excess UV emission. For the two new objects we obtained Chandra/ACIS-S observations, and for all three targets we obtained HST/WFC3 F555W and F160W imaging. We conclude that the excess UV emission is primarily dominated by light from the central highly obscured, hyper-luminous AGN that has been scattered into our line of sight. We cannot rule out, however, that star-formation may significantly contribute to the UV excess of W0204-0506.
116 - Lulu Fan 2016
Previous studies have shown that WISE-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick AGNs. High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at $zsim3$ using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction ($62pm 14 %$). By fitting the surface brightness profiles, we find that the distribution of Sersic indices in our Hot DOG sample peaks around 2, which suggests that most of Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity ($sim10^{14}L_odot$) of our Hot DOG sample by using IR SEDs decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction (Hickox et al. 2014). Both the high merger fraction in IR-luminous AGN sample and relatively low merger fraction in UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst dominated phase to the unobscured QSO phase.
We present results of optical broad-band and narrow-band Halpha observations of a sample of forty nearby early-type galaxies. The majority of sample galaxies are known to have dust in various forms viz. dust lanes, nuclear dust and patchy/filamentary dust. A detailed study of dust was performed for 12 galaxies with prominent dust features. The extinction curves for these galaxies run parallel to the Galactic extinction curve, implying that the properties of dust in these galaxies are similar to those of the Milky-Way. The ratio of total to selective extinction (Rv) varies between 2.1 and 3.8, with an average of 2.9 +/- 0.2, fairly close to its canonical value of 3.1 for our Galaxy. The average relative grain size <a>/a_Gal of dust particles in these galaxies turns out to be 1.01 +/- 0.2, while dust mass estimated using optical extinction lies in the range 10^2 to 10^4 M(sun) . The Halpha emission was detected in 23 out of 29 galaxies imaged through narrow- band filters with the Halpha luminosities in the range 10^38 - 10^41 erg s^-1. The mass of the ionized gas is in the range 10^3-10^5 M(sun). The morphology and extent of ionized gas is found similar to those of dust, indicating possible coexistence of dust and ionized gas in these galaxies. The absence of any apparent correlation between blue luminosity and normalized IRAS dust mass is suggestive of merger related origin of dust and gas in these galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا