ﻻ يوجد ملخص باللغة العربية
Matrix factorization techniques compute low-rank product approximations of high dimensional data matrices and as a result, are often employed in recommender systems and collaborative filtering applications. However, many algorithms for this task utilize an exact least-squares solver whose computation is time consuming and memory-expensive. In this paper we discuss and test a block Kaczmarz solver that replaces the least-squares subroutine in the common alternating scheme for matrix factorization. This variant trades a small increase in factorization error for significantly faster algorithmic performance. In doing so we find block sizes that produce a solution comparable to that of the least-squares solver for only a fraction of the runtime and working memory requirement.
Multiresolution Matrix Factorization (MMF) was recently introduced as an alternative to the dominant low-rank paradigm in order to capture structure in matrices at multiple different scales. Using ideas from multiresolution analysis (MRA), MMF teased
This paper is concerned with improving the empirical convergence speed of block-coordinate descent algorithms for approximate nonnegative tensor factorization (NTF). We propose an extrapolation strategy in-between block updates, referred to as heuris
The sampling Kaczmarz-Motzkin (SKM) method is a generalization of the randomized Kaczmarz and Motzkin methods. It first samples some rows of coefficient matrix randomly to build a set and then makes use of the maximum violation criterion within this
The famous greedy randomized Kaczmarz (GRK) method uses the greedy selection rule on maximum distance to determine a subset of the indices of working rows. In this paper, with the greedy selection rule on maximum residual, we propose the greedy rando
We present a novel approach which aims at high-performance uncertainty quantification for cardiac electrophysiology simulations. Employing the monodomain equation to model the transmembrane potential inside the cardiac cells, we evaluate the effect o