ترغب بنشر مسار تعليمي؟ اضغط هنا

On Application of Block Kaczmarz Methods in Matrix Factorization

291   0   0.0 ( 0 )
 نشر من قبل Edwin Chau
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Matrix factorization techniques compute low-rank product approximations of high dimensional data matrices and as a result, are often employed in recommender systems and collaborative filtering applications. However, many algorithms for this task utilize an exact least-squares solver whose computation is time consuming and memory-expensive. In this paper we discuss and test a block Kaczmarz solver that replaces the least-squares subroutine in the common alternating scheme for matrix factorization. This variant trades a small increase in factorization error for significantly faster algorithmic performance. In doing so we find block sizes that produce a solution comparable to that of the least-squares solver for only a fraction of the runtime and working memory requirement.


قيم البحث

اقرأ أيضاً

Multiresolution Matrix Factorization (MMF) was recently introduced as an alternative to the dominant low-rank paradigm in order to capture structure in matrices at multiple different scales. Using ideas from multiresolution analysis (MRA), MMF teased out hierarchical structure in symmetric matrices by constructing a sequence of wavelet bases. While effective for such matrices, there is plenty of data that is more naturally represented as nonsymmetric matrices (e.g. directed graphs), but nevertheless has similar hierarchical structure. In this paper, we explore techniques for extending MMF to any square matrix. We validate our approach on numerous matrix compression tasks, demonstrating its efficacy compared to low-rank methods. Moreover, we also show that a combined low-rank and MMF approach, which amounts to removing a small global-scale component of the matrix and then extracting hierarchical structure from the residual, is even more effective than each of the two complementary methods for matrix compression.
This paper is concerned with improving the empirical convergence speed of block-coordinate descent algorithms for approximate nonnegative tensor factorization (NTF). We propose an extrapolation strategy in-between block updates, referred to as heuris tic extrapolation with restarts (HER). HER significantly accelerates the empirical convergence speed of most existing block-coordinate algorithms for dense NTF, in particular for challenging computational scenarios, while requiring a negligible additional computational budget.
98 - Yanjun Zhang , Hanyu Li 2020
The sampling Kaczmarz-Motzkin (SKM) method is a generalization of the randomized Kaczmarz and Motzkin methods. It first samples some rows of coefficient matrix randomly to build a set and then makes use of the maximum violation criterion within this set to determine a constraint. Finally, it makes progress by enforcing this single constraint. In this paper, on the basis of the framework of the SKM method and considering the greedy strategies, we present two block sampling Kaczmarz-Motzkin methods for consistent linear systems. Specifically, we also first sample a subset of rows of coefficient matrix and then determine an index in this set using the maximum violation criterion. Unlike the SKM method, in the rest of the block methods, we devise different greedy strategies to build index sets. Then, the new methods make progress by enforcing the corresponding multiple constraints simultaneously. Theoretical analyses demonstrate that these block methods converge at least as quickly as the SKM method, and numerical experiments show that, for the same accuracy, our methods outperform the SKM method in terms of the number of iterations and computing time.
238 - Yanjun Zhang , Hanyu Li 2020
The famous greedy randomized Kaczmarz (GRK) method uses the greedy selection rule on maximum distance to determine a subset of the indices of working rows. In this paper, with the greedy selection rule on maximum residual, we propose the greedy rando mized Motzkin-Kaczmarz (GRMK) method for linear systems. The block version of the new method is also presented. We analyze the convergence of the two methods and provide the corresponding convergence factors. Extensive numerical experiments show that the GRMK method has almost the same performance as the GRK method for dense matrices and the former performs better in computing time for some sparse matrices, and the blo
We present a novel approach which aims at high-performance uncertainty quantification for cardiac electrophysiology simulations. Employing the monodomain equation to model the transmembrane potential inside the cardiac cells, we evaluate the effect o f spatially correlated perturbations of the heart fibers on the statistics of the resulting quantities of interest. Our methodology relies on a close integration of multilevel quadrature methods, parallel iterative solvers and space-time finite element discretizations, allowing for a fully parallelized framework in space, time and stochastics. Extensive numerical studies are presented to evaluate convergence rates and to compare the performance of classical Monte Carlo methods such as standard Monte Carlo (MC) and quasi-Monte Carlo (QMC), as well as multilevel strategies, i.e. multilevel Monte Carlo (MLMC) and multilevel quasi-Monte Carlo (MLQMC) on hierarchies of nested meshes. Finally, we employ a recently suggested variant of the multilevel approach for non-nested meshes to deal with a realistic heart geometry.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا