ترغب بنشر مسار تعليمي؟ اضغط هنا

Open Question Answering over Tables and Text

176   0   0.0 ( 0 )
 نشر من قبل Wenhu Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question. Most open QA systems have considered only retrieving information from unstructured text. Here we consider for the first time open QA over both tabular and textual data and present a new large-scale dataset Open Table-and-Text Question Answering (OTT-QA) to evaluate performance on this task. Most questions in OTT-QA require multi-hop inference across tabular data and unstructured text, and the evidence required to answer a question can be distributed in different ways over these two types of input, making evidence retrieval challenging -- our baseline model using an iterative retriever and BERT-based reader achieves an exact match score less than 10%. We then propose two novel techniques to address the challenge of retrieving and aggregating evidence for OTT-QA. The first technique is to use early fusion to group multiple highly relevant tabular and textual units into a fused block, which provides more context for the retriever to search for. The second technique is to use a cross-block reader to model the cross-dependency between multiple retrieved evidence with global-local sparse attention. Combining these two techniques improves the score significantly, to above 27%.



قيم البحث

اقرأ أيضاً

When answering complex questions, people can seamlessly combine information from visual, textual and tabular sources. While interest in models that reason over multiple pieces of evidence has surged in recent years, there has been relatively little w ork on question answering models that reason across multiple modalities. In this paper, we present MultiModalQA(MMQA): a challenging question answering dataset that requires joint reasoning over text, tables and images. We create MMQA using a new framework for generating complex multi-modal questions at scale, harvesting tables from Wikipedia, and attaching images and text paragraphs using entities that appear in each table. We then define a formal language that allows us to take questions that can be answered from a single modality, and combine them to generate cross-modal questions. Last, crowdsourcing workers take these automatically-generated questions and rephrase them into more fluent language. We create 29,918 questions through this procedure, and empirically demonstrate the necessity of a multi-modal multi-hop approach to solve our task: our multi-hop model, ImplicitDecomp, achieves an average F1of 51.7 over cross-modal questions, substantially outperforming a strong baseline that achieves 38.2 F1, but still lags significantly behind human performance, which is at 90.1 F1
Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a retriever designed to handle tabular context. We present an effective pre-training procedure for our retriever and improve retrieval quality with mined hard negatives. As relevant datasets are missing, we extract a subset of Natural Questions (Kwiatkowski et al., 2019) into a Table QA dataset. We find that our retriever improves retrieval results from 72.0 to 81.1 recall@10 and end-to-end QA results from 33.8 to 37.7 exact match, over a BERT based retriever.
Recent advances in transformers have enabled Table Question Answering (Table QA) systems to achieve high accuracy and SOTA results on open domain datasets like WikiTableQuestions and WikiSQL. Such transformers are frequently pre-trained on open-domai n content such as Wikipedia, where they effectively encode questions and corresponding tables from Wikipedia as seen in Table QA dataset. However, web tables in Wikipedia are notably flat in their layout, with the first row as the sole column header. The layout lends to a relational view of tables where each row is a tuple. Whereas, tables in domain-specific business or scientific documents often have a much more complex layout, including hierarchical row and column headers, in addition to having specialized vocabulary terms from that domain. To address this problem, we introduce the domain-specific Table QA dataset AIT-QA (Airline Industry Table QA). The dataset consists of 515 questions authored by human annotators on 116 tables extracted from public U.S. SEC filings (publicly available at: https://www.sec.gov/edgar.shtml) of major airline companies for the fiscal years 2017-2019. We also provide annotations pertaining to the nature of questions, marking those that require hierarchical headers, domain-specific terminology, and paraphrased forms. Our zero-shot baseline evaluation of three transformer-based SOTA Table QA methods - TaPAS (end-to-end), TaBERT (semantic parsing-based), and RCI (row-column encoding-based) - clearly exposes the limitation of these methods in this practical setting, with the best accuracy at just 51.8% (RCI). We also present pragmatic table preprocessing steps used to pivot and project these complex tables into a layout suitable for the SOTA Table QA models.
In this paper, we describe a dataset and baseline result for a question answering that utilizes web tables. It contains commonly asked questions on the web and their corresponding answers found in tables on websites. Our dataset is novel in that ever y question is paired with a table of a different signature. In particular, the dataset contains two classes of tables: entity-instance tables and the key-value tables. Each QA instance comprises a table of either kind, a natural language question, and a corresponding structured SQL query. We build our model by dividing question answering into several tasks, including table retrieval and question element classification, and conduct experiments to measure the performance of each task. We extract various features specific to each task and compose a full pipeline which constructs the SQL query from its parts. Our work provides qualitative results and error analysis for each task, and identifies in detail the reasoning required to generate SQL expressions from natural language questions. This analysis of reasoning informs future models based on neural machine learning.
While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Googles responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmarkT5 models on GooAQ and observe that: (a) in line with recent work, LMs strong performance on GooAQs short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as how and why questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا