ﻻ يوجد ملخص باللغة العربية
Let $M$ be a type ${rm II}$ factor and let $tau$ be the faithful positive semifinite normal trace, unique up to scalar multiples in the type ${rm II}_infty$ case and normalized by $tau(I)=1$ in the type ${rm II}_1$ case. Given $Ain M^+$, we denote by $A_+=(A-I)chi_A(1,|A|]$ the excess part of $A$ and by $A_-=(I-A)chi_A(0,1)$ the defect part of $A$. V. Kaftal, P. Ng and S. Zhang provided necessary and sufficient conditions for a positive operator to be the sum of a finite or infinite collection of projections (not necessarily mutually orthogonal) in type ${rm I}$ and type ${rm III}$ factors. For type ${rm II}$ factors, V. Kaftal, P. Ng and S. Zhang proved that $tau(A_+)geq tau(A_-)$ is a necessary condition for an operator $Ain M^+$ which can be written as the sum of a finite or infinite collection of projections and also sufficient if the operator is diagonalizable. In this paper, we prove that if $Ain M^+$ and $tau(A_+)geq tau(A_-)$, then $A$ can be written as the sum of a finite or infinite collection of projections. This result answers affirmatively a question raised by V. Kaftal, P. Ng and S. Zhang.
Let $mathcal{M}$ be a type ${rm II_1}$ factor and let $tau$ be the faithful normal tracial state on $mathcal{M}$. In this paper, we prove that given an $X in mathcal{M}$, $X=X^*$, then there is a decomposition of the identity into $N in mathbb{N}$ mu
The Wigners theorem, which is one of the cornerstones of the mathematical formulation of quantum mechanics, asserts that every symmetry of quantum system is unitary or anti-unitary. This classical result was first given by Wigner in 1931. Thereafter
We show that any Lipschitz projection-valued function p on a connected closed Riemannian manifold can be approximated uniformly by smooth projection-valued functions q with Lipschitz constant close to that of p. This answers a question of Rieffel.
Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]sqsubseteq [q]$ iff for every primitive ideal $mathfrak p$ of $A$ either $p/mathfra
It is shown that for any approximately central (AC) projection $e$ in the Flip orbifold $A_theta^Phi$ (of the irrational rotation C*-algebra $A_theta$), and any modular automorphism $alpha$ (arising from SL$(2,mathbb Z)$), the AC projection $alpha(e)