ﻻ يوجد ملخص باللغة العربية
Todays high-performance computing (HPC) applications are producing vast volumes of data, which are challenging to store and transfer efficiently during the execution, such that data compression is becoming a critical technique to mitigate the storage burden and data movement cost. Huffman coding is arguably the most efficient Entropy coding algorithm in information theory, such that it could be found as a fundamental step in many modern compression algorithms such as DEFLATE. On the other hand, todays HPC applications are more and more relying on the accelerators such as GPU on supercomputers, while Huffman encoding suffers from low throughput on GPUs, resulting in a significant bottleneck in the entire data processing. In this paper, we propose and implement an efficient Huffman encoding approach based on modern GPU architectures, which addresses two key challenges: (1) how to parallelize the entire Huffman encoding algorithm, including codebook construction, and (2) how to fully utilize the high memory-bandwidth feature of modern GPU architectures. The detailed contribution is four-fold. (1) We develop an efficient parallel codebook construction on GPUs that scales effectively with the number of input symbols. (2) We propose a novel reduction based encoding scheme that can efficiently merge the codewords on GPUs. (3) We optimize the overall GPU performance by leveraging the state-of-the-art CUDA APIs such as Cooperative Groups. (4) We evaluate our Huffman encoder thoroughly using six real-world application datasets on two advanced GPUs and compare with our implemented multi-threaded Huffman encoder. Experiments show that our solution can improve the encoding throughput by up to 5.0X and 6.8X on NVIDIA RTX 5000 and V100, respectively, over the state-of-the-art GPU Huffman encoder, and by up to 3.3X over the multi-thread encoder on two 28-core Xeon Platinum 8280 CPUs.
The trend towards highly parallel multi-processing is ubiquitous in all modern computer architectures, ranging from handheld devices to large-scale HPC systems; yet many applications are struggling to fully utilise the multiple levels of parallelism
Convolution layers are prevalent in many classes of deep neural networks, including Convolutional Neural Networks (CNNs) which provide state-of-the-art results for tasks like image recognition, neural machine translation and speech recognition. The c
Efficient optimal prefix coding has long been accomplished via the Huffman algorithm. However, there is still room for improvement and exploration regarding variants of the Huffman problem. Length-limited Huffman coding, useful for many practical app
Designing efficient and scalable sparse linear algebra kernels on modern multi-GPU based HPC systems is a daunting task due to significant irregular memory references and workload imbalance across the GPUs. This is particularly the case for Sparse Tr
This paper investigates the multi-GPU performance of a 3D buoyancy driven cavity solver using MPI and OpenACC directives on different platforms. The paper shows that decomposing the total problem in different dimensions affects the strong scaling per