ترغب بنشر مسار تعليمي؟ اضغط هنا

Depth Guided Adaptive Meta-Fusion Network for Few-shot Video Recognition

168   0   0.0 ( 0 )
 نشر من قبل Yuqian Fu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans can easily recognize actions with only a few examples given, while the existing video recognition models still heavily rely on the large-scale labeled data inputs. This observation has motivated an increasing interest in few-shot video action recognition, which aims at learning new actions with only very few labeled samples. In this paper, we propose a depth guided Adaptive Meta-Fusion Network for few-shot video recognition which is termed as AMeFu-Net. Concretely, we tackle the few-shot recognition problem from three aspects: firstly, we alleviate this extremely data-scarce problem by introducing depth information as a carrier of the scene, which will bring extra visual information to our model; secondly, we fuse the representation of original RGB clips with multiple non-strictly corresponding depth clips sampled by our temporal asynchronization augmentation mechanism, which synthesizes new instances at feature-level; thirdly, a novel Depth Guided Adaptive Instance Normalization (DGAdaIN) fusion module is proposed to fuse the two-stream modalities efficiently. Additionally, to better mimic the few-shot recognition process, our model is trained in the meta-learning way. Extensive experiments on several action recognition benchmarks demonstrate the effectiveness of our model.



قيم البحث

اقرأ أيضاً

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model. Our codes and models are available at https://github.com/MyChocer/KGTN .
Few-shot instance segmentation (FSIS) conjoins the few-shot learning paradigm with general instance segmentation, which provides a possible way of tackling instance segmentation in the lack of abundant labeled data for training. This paper presents a Fully Guided Network (FGN) for few-shot instance segmentation. FGN perceives FSIS as a guided model where a so-called support set is encoded and utilized to guide the predictions of a base instance segmentation network (i.e., Mask R-CNN), critical to which is the guidance mechanism. In this view, FGN introduces different guidance mechanisms into the various key components in Mask R-CNN, including Attention-Guided RPN, Relation-Guided Detector, and Attention-Guided FCN, in order to make full use of the guidance effect from the support set and adapt better to the inter-class generalization. Experiments on public datasets demonstrate that our proposed FGN can outperform the state-of-the-art methods.
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation is thus proposed to tackle this problem by learning a model that quick ly adapts to new classes with a few labeled support samples. Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information of training classes and spatial inconsistency between query and support targets. To alleviate these issues, we propose the Prior Guided Feature Enrichment Network (PFENet). It consists of novel designs of (1) a training-free prior mask generation method that not only retains generalization power but also improves model performance and (2) Feature Enrichment Module (FEM) that overcomes spatial inconsistency by adaptively enriching query features with support features and prior masks. Extensive experiments on PASCAL-5$^i$ and COCO prove that the proposed prior generation method and FEM both improve the baseline method significantly. Our PFENet also outperforms state-of-the-art methods by a large margin without efficiency loss. It is surprising that our model even generalizes to cases without labeled support samples. Our code is available at https://github.com/Jia-Research-Lab/PFENet/.
Recognizing multiple labels of an image is a practical yet challenging task, and remarkable progress has been achieved by searching for semantic regions and exploiting label dependencies. However, current works utilize RNN/LSTM to implicitly capture sequential region/label dependencies, which cannot fully explore mutual interactions among the semantic regions/labels and do not explicitly integrate label co-occurrences. In addition, these works require large amounts of training samples for each category, and they are unable to generalize to novel categories with limited samples. To address these issues, we propose a knowledge-guided graph routing (KGGR) framework, which unifies prior knowledge of statistical label correlations with deep neural networks. The framework exploits prior knowledge to guide adaptive information propagation among different categories to facilitate multi-label analysis and reduce the dependency of training samples. Specifically, it first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence. Then, it introduces the label semantics to guide learning semantic-specific features to initialize the graph, and it exploits a graph propagation network to explore graph node interactions, enabling learning contextualized image feature representations. Moreover, we initialize each graph node with the classifier weights for the corresponding label and apply another propagation network to transfer node messages through the graph. In this way, it can facilitate exploiting the information of correlated labels to help train better classifiers. We conduct extensive experiments on the traditional multi-label image recognition (MLR) and multi-label few-shot learning (ML-FSL) tasks and show that our KGGR framework outperforms the current state-of-the-art methods by sizable margins on the public benchmarks.
Human pose is a useful feature for fine-grained sports action understanding. However, pose estimators are often unreliable when run on sports video due to domain shift and factors such as motion blur and occlusions. This leads to poor accuracy when d ownstream tasks, such as action recognition, depend on pose. End-to-end learning circumvents pose, but requires more labels to generalize. We introduce Video Pose Distillation (VPD), a weakly-supervised technique to learn features for new video domains, such as individual sports that challenge pose estimation. Under VPD, a student network learns to extract robust pose features from RGB frames in the sports video, such that, whenever pose is considered reliable, the features match the output of a pretrained teacher pose detector. Our strategy retains the best of both pose and end-to-end worlds, exploiting the rich visual patterns in raw video frames, while learning features that agree with the athletes pose and motion in the target video domain to avoid over-fitting to patterns unrelated to athletes motion. VPD features improve performance on few-shot, fine-grained action recognition, retrieval, and detection tasks in four real-world sports video datasets, without requiring additional ground-truth pose annotations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا