ترغب بنشر مسار تعليمي؟ اضغط هنا

An integral-free representation of the Dyson series using divided differences

223   0   0.0 ( 0 )
 نشر من قبل Itay Hen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dyson series is an infinite sum of multi-dimensional time-ordered integrals, which serves as a formal representation of the quantum time evolution operator in the interaction picture. Using the mathematical tool of divided differences, we introduce an alternative representation for the series that is entirely free from both time ordering and integrals. In this new formalism, the Dyson expansion is given as a sum of efficiently-computable divided differences of the exponential function, considerably simplifying the calculation of the Dyson expansion terms, while also allowing for time-dependent perturbation calculations to be performed directly in the Schr{o}dinger picture. We showcase the utility of this novel representation by studying a number of use cases. We also discuss several immediate applications.

قيم البحث

اقرأ أيضاً

The dynamics of interacting quantum systems in the presence of disorder is studied and an exact representation for disorder-averaged quantities via Ito stochastic calculus is obtained. The stochastic integral representation affords many advantages, i ncluding amenability to analytic approximation, applicability to interacting systems, and compatibility with existing tensor network methods. The integral may be expanded to produce a series of approximations, the first of which already includes all diffusive corrections and, further, is manifestly completely positive. The addition of fluctuations leads to a convergent series of systematic corrections. As examples, expressions for the density of states, spectral form factor, and out-of-time-order correlators for the Anderson model are obtained.
The analysis of the entanglement entropy of a subsystem of a one-dimensional quantum system is a powerful tool for unravelling its critical nature. For instance, the scaling behaviour of the entanglement entropy determines the central charge of the a ssociated Virasoro algebra. For a free fermion system, the entanglement entropy depends essentially on two sets, namely the set $A$ of sites of the subsystem considered and the set $K$ of excited momentum modes. In this work we make use of a general duality principle establishing the invariance of the entanglement entropy under exchange of the sets $A$ and $K$ to tackle complex problems by studying their dual counterparts. The duality principle is also a key ingredient in the formulation of a novel conjecture for the asymptotic behavior of the entanglement entropy of a free fermion system in the general case in which both sets $A$ and $K$ consist of an arbitrary number of blocks. We have verified that this conjecture reproduces the numerical results with excellent precision for all the configurations analyzed. We have also applied the conjecture to deduce several asymptotic formulas for the mutual and $r$-partite information generalizing the known ones for the single block case.
We study the decimation to a sublattice of half the sites, of the one-dimensional Dyson-Ising ferromagnet with slowly decaying long-range pair interactions of the form $frac{1}{{|i-j|}^{alpha}}$, in the phase transition region (1< $alpha leq$ 2, and low temperature). We prove non-Gibbsianness of the decimated measure at low enough temperatures by exhibiting a point of essential discontinuity for the finite-volume conditional probabilities of decimated Gibbs measures. Thus result complements previous work proving conservation of Gibbsianness for fastly decaying potentials ($alpha$ > 2) and provides an example of a standard non-Gibbsian result in one dimension, in the vein of similar resuts in higher dimensions for short-range models. We also discuss how these measures could fit within a generalized (almost vs. weak) Gibbsian framework. Moreover we comment on the possibility of similar results for some other transformations.
The Casimir force and free energy at low temperatures has been the subject of focus for some time. We calculate the temperature correction to the Casimir-Lifshitz free energy between two parallel plates made of dielectric material possessing a consta nt conductivity at low temperatures, described through a Drude-type dielectric function. For the transverse magnetic (TM) mode such a calculation is new. A further calculation for the case of the TE mode is thereafter presented which extends and generalizes previous work for metals. A numerical study is undertaken to verify the correctness of the analytic results.
The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed usin g the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا