ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Integral Representation for the Dynamics of Disordered Systems

114   0   0.0 ( 0 )
 نشر من قبل Tobias J. Osborne
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of interacting quantum systems in the presence of disorder is studied and an exact representation for disorder-averaged quantities via Ito stochastic calculus is obtained. The stochastic integral representation affords many advantages, including amenability to analytic approximation, applicability to interacting systems, and compatibility with existing tensor network methods. The integral may be expanded to produce a series of approximations, the first of which already includes all diffusive corrections and, further, is manifestly completely positive. The addition of fluctuations leads to a convergent series of systematic corrections. As examples, expressions for the density of states, spectral form factor, and out-of-time-order correlators for the Anderson model are obtained.



قيم البحث

اقرأ أيضاً

We revisit the Fermi two-atoms problem in the framework of disordered systems. In our model we consider a two-qubits system linearly coupled with a quantum massless scalar field. We analyze the energy transfer between the qubits under different exper imental perspectives. In addition, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary and Gaussian process. We demonstrate that the classical notion of causality emerges only in the wave zone in the presence of random fluctuations of the light cone. Possible repercussions are discussed.
We propose an efficient numerical method to compute configuration averages of observables in disordered open quantum systems whose dynamics can be unraveled via stochastic trajectories. We prove that the optimal sampling of trajectories and disorder configurations is simply achieved by considering one random disorder configuration for each individual trajectory. As a first application, we exploit the present method to the study the role of disorder on the physics of the driven-dissipative Bose-Hubbard model in two different regimes: (i) for strong interactions, we explore the dissipative physics of fermionized bosons in disordered one-dimensional chains; (ii) for weak interactions, we investigate the role of on-site inhomogeneities on a first-order dissipative phase transition in a two-dimensional square lattice.
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $beta = d/alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
Simulations of systems with quenched disorder are extremely demanding, suffering from the combined effect of slow relaxation and the need of performing the disorder average. As a consequence, new algorithms, improved implementations, and alternative and even purpose-built hardware are often instrumental for conducting meaningful studies of such systems. The ensuing demands regarding hardware availability and code complexity are substantial and sometimes prohibitive. We demonstrate how with a moderate coding effort leaving the overall structure of the simulation code unaltered as compared to a CPU implementation, very significant speed-ups can be achieved from a parallel code on GPU by mainly exploiting the trivial parallelism of the disorder samples and the near-trivial parallelism of the parallel tempering replicas. A combination of this massively parallel implementation with a careful choice of the temperature protocol for parallel tempering as well as efficient cluster updates allows us to equilibrate comparatively large systems with moderate computational resources.
Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report o n the observation of anomalous relaxation dynamics in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared in a superposition of two-different Rydberg states. The total magnetization is found to exhibit sub-exponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation originates from the build-up of non-classical correlations. In both experiment and semi-classical simulations, we find the evolution towards a randomized state is independent of the strength of disorder up to a critical value. This hints towards a unifying description of relaxation dynamics in disordered isolated quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios in classical spin glasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا