ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamic simulations of an isolated star-forming gas cloud in the Virgo cluster

99   0   0.0 ( 0 )
 نشر من قبل Francesco Calura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a suite of three-dimensional, high-resolution hydrodynamic simulations that follow the evolution of a massive (10^7 M_sun) pressure confined, star-forming neutral gas cloud moving through a hot intra-cluster medium (ICM). The main goal of the analysis is to get theoretical insight into the lifetimes and evolution of stellar systems like the recently discovered star-forming cloud SECCO~1 in the Virgo cluster of galaxies, but it may be of general interest for the study of the star-forming gas clumps that are observed in the tails of ram pressure stripped galaxies. Building upon a previous, simple simulation, we explored the effect of different relative velocity of the cloud and larger temperature of the ICM, as well as the effect of the cloud self-gravity. Moreover, we performed a simulation including star-formation and stellar feedback, allowing for a first time a direct comparison with the observed properties of the stars in the system. The survivability of the cold gas in the simulated clouds is granted on timescales of the order of 1 Gyr, with final cold gas fractions generally $>0.75$. In all cases, the simulated systems end up, after 1 Gyr of evolution, as symmetric clouds in pressure equilibrium with the external hot gas. We also confirm that gravity played a negligible role at the largest scales on the evolution of the clouds. In our simulation with star formation, star formation begins immediately, it peaks at the earliest times and decreases monotonically with time. Inhomogeneous supernova explosions are the cause of an asymmetric shape of the gas cloud, facilitating the development of instabilities and the decrease of the cold gas fraction.


قيم البحث

اقرأ أيضاً

SECCO1 is an extremely dark, low-mass (M_star=10^5 M_sun), star-forming stellar system lying in the Low Velocity Cloud (LVC) substructure of the Virgo cluster of galaxies, and hosting several HII regions. Here we review our knowledge of this remarkab le system, and present the results of (a) additional analysis of our panoramic spectroscopic observations with MUSE, (b) the combined analysis of Hubble Space Telescope and MUSE data, and (c) new narrow-band observations obtained with OSIRIS@GTC to search for additional HII regions in the surroundings of the system. We provide new evidence supporting an age as young as 4 Myr for the stars that are currently ionising the gas in SECCO1. We identify only one new promising candidate HII region possibly associated with SECCO1, thus confirming the extreme isolation of the system. We also identify three additional candidate pressure-supported dark clouds in Virgo among the targets of the SECCO survey. Various possible hypotheses for the nature and origin of SECCO1 are considered and discussed, also with the help of dedicated hydrodynamical simulations showing that a hydrogen cloud with the characteristics of SECCO1 can likely survive for >1 Gyr while traveling within the LVC Intra Cluster Medium.
To investigate how molecular clouds react to different environmental conditions at a galactic scale, we present a catalogue of giant molecular clouds resolved down to masses of $sim 10$~M$_{odot}$ from a simulation of the entire disc of an interactin g M51-like galaxy and a comparable isolated galaxy. Our model includes time-dependent gas chemistry, sink particles for star formation and supernova feedback, meaning we are not reliant on star formation recipes based on threshold densities and can follow the physics of the cold molecular phase. We extract giant molecular clouds at a given timestep of the simulations and analyse their properties. In the disc of our simulated galaxies, spiral arms seem to act merely as snowplows, gathering gas and clouds without dramatically affecting their properties. In the centre of the galaxy, on the other hand, environmental conditions lead to larger, more massive clouds. While the galaxy interaction has little effect on cloud masses and sizes, it does promote the formation of counter-rotating clouds. We find that the identified clouds seem to be largely gravitationally unbound at first glance, but a closer analysis of the hierarchical structure of the molecular interstellar medium shows that there is a large range of virial parameters with a smooth transition from unbound to mostly bound for the densest structures. The common observation that clouds appear to be virialised entities may therefore be due to CO bright emission highlighting a specific level in this hierarchical binding sequence. The small fraction of gravitationally bound structures found suggests that low galactic star formation efficiencies may be set by the process of cloud formation and initial collapse.
We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies a nd marginally detected in another one. CO fluxes correlate with the FIR 250 $mu$m emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 10$^9$ M$_{odot}$, contrary to the atomic hydrogen fraction, M$_{HI}$/M$_*$, which increases inversely with M$_*$. The flattening of the M$_{H_2}$/M$_*$ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, $tau_{dep}$, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between HI deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity.
We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high resolution, three-dimensional {sc arepo} simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM) we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star-formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.
It has been hypothesized that photons from young, massive star clusters are responsible for maintaining the ionization of diffuse warm ionized gas seen in both the Milky Way and other disk galaxies. For a theoretical investigation of the warm ionized medium (WIM), it is crucial to solve radiation transfer equations where the ISM and clusters are modeled self-consistently. To this end, we employ a Solar neighborhood model of TIGRESS, a magnetohydrodynamic simulation of the multiphase, star-forming ISM, and post-process the simulation with an adaptive ray tracing method to transfer UV radiation from star clusters. We find that the WIM volume filling factor is highly variable, and sensitive to the rate of ionizing photon production and ISM structure. The mean WIM volume filling factor rises to ~0.15 at |z|~1 kpc. Approximately half of ionizing photons are absorbed by gas and half by dust; the cumulative ionizing photon escape fraction is 1.1%. Our time-averaged synthetic H$alpha$ line profile matches WHAM observations on the redshifted (outflowing) side, but has insufficient intensity on the blueshifted side. Our simulation matches the Dickey-Lockman neutral density profile well, but only a small fraction of snapshots have high-altitude WIM density consistent with Reynolds Layer estimates. We compute a clumping correction factor C = <n_e>/sqrt<n_e^2>~0.2 that is remarkably constant with distance from the midplane and time; this can be used to improve estimates of ionized gas mass and mean electron density from observed H$alpha$ surface brightness profiles in edge-on galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا