ترغب بنشر مسار تعليمي؟ اضغط هنا

Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

136   0   0.0 ( 0 )
 نشر من قبل Marco Grossi Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 $mu$m emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 10$^9$ M$_{odot}$, contrary to the atomic hydrogen fraction, M$_{HI}$/M$_*$, which increases inversely with M$_*$. The flattening of the M$_{H_2}$/M$_*$ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, $tau_{dep}$, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between HI deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity.



قيم البحث

اقرأ أيضاً

The paper aims to study relation between the distributions of the young stellar objects (YSOs) of different ages and the gas-dust constituents of the S254-S258 star-formation complex. This is necessary to study the time evolution of the YSO distribut ion with respect to the gas and dust compounds which are responsible for the birth of the young stars. For this purpose we use correlation analysis between different gas, dust and YSOs tracers. We compared the large-scale CO, HCO$^+$, near-IR extinction, and far-IR {it Herschel} maps with the density of YSOs of the different evolutionary Classes. The direct correlation analysis between these maps was used together with the wavelet-based spatial correlation analysis. This analysis reveals a much tighter correlation of the gas-dust tracers with the distribution of Class I YSOs than with that of Class II YSOs. We argue that Class I YSOs which were initially born in the central bright cluster S255-IR (both N and S parts) during their evolution to Class II stage ($sim$2 Myr) had enough time to travel through the whole S254-S258 star-formation region. Given that the region contains several isolated YSO clusters, the evolutionary link between these clusters and the bright central S255-IR (N and S) cluster can be considered. Despite the complexity of the YSO cluster formation in the non-uniform medium, the clusters of Class II YSOs in the S254-258 star-formation region can contain objects born in the different locations of the complex.
We present large-area maps of the CO J=3-2 emission obtained at the James Clerk Maxwell Telescope for four spiral galaxies in the Virgo Cluster. We combine these data with published CO J=1-0, 24 micron, and Halpha images to measure the CO line ratios , molecular gas masses, and instantaneous gas depletion times. For three galaxies in our sample (NGC 4254, NGC4321, and NGC 4569), we obtain molecular gas masses of 7E8-3E9 Msun and disk-averaged instantaneous gas depletion times of 1.1-1.7 Gyr. We argue that the CO J=3-2 line is a better tracer of the dense star forming molecular gas than the CO J=1-0 line, as it shows a better correlation with the star formation rate surface density both within and between galaxies. NGC 4254 appears to have a larger star formation efficiency(smaller gas depletion time), perhaps because it is on its first passage through the Virgo Cluster. NGC 4569 shows a large-scale gradient in the gas properties traced by the CO J=3-2/J=1-0 line ratio, which suggests that its interaction with the intracluster medium is affecting the dense star-forming portion of the interstellar medium directly. The fourth galaxy in our sample, NGC 4579, has weak CO J=3-2 emission despite having bright 24 micron emission; however, much of the central luminosity in this galaxy may be due to the presence of a central AGN.
Using the far-infrared emission, as observed by the Herschel Virgo Cluster Survey (HeViCS), and the integrated HI and CO brightness, we infer the dust and total gas mass for a magnitude limited sample of 35 metal rich spiral galaxies in Virgo. The CO flux correlates tightly and linearly with far-infrared fluxes observed by Herschel. Molecules in these galaxies are more closely related to cold dust rather than to dust heated by star formation or to optical/NIR brightness. We show that dust mass establishes a stronger correlation with the total gas mass than with the atomic or molecular component alone. The dust-to-gas ratio increases as the HI deficiency increases, but in highly HI deficient galaxies it stays constant. Dust is in fact less affected than atomic gas by weak cluster interactions, which remove most of the HI gas from outer and high latitudes regions. Highly disturbed galaxies, in a dense cluster environment, can instead loose a considerable fraction of gas and dust from the inner regions of the disk keeping constant the dust-to-gas ratio. There is evidence that the molecular phase is also quenched. This quencing becomes evident by considering the molecular gas mass per unit stellar mass. Its amplitude, if confirmed by future studies, highlights that molecules are missing in Virgo HI deficient spirals, but to a somewhat lesser extent than dust.
We use dust masses ($M_{dust}$) derived from far-infrared data and molecular gas masses ($M_{mol}$) based on CO luminosity, to calibrate proxies based on a combination of the galaxy Balmer decrement, disk inclination and gas metallicity. We use such proxies to estimate $M_{dust}$ and $M_{mol}$ in the local SDSS sample of star-forming galaxies (SFGs). We study the distribution of $M_{dust}$ and $M_{mol}$ along and across the Main Sequence (MS) of SFGs. We find that $M_{dust}$ and $M_{mol}$ increase rapidly along the MS with increasing stellar mass ($M_*$), and more marginally across the MS with increasing SFR (or distance from the relation). The dependence on $M_*$ is sub-linear for both $M_{dust}$ and $M_{mol}$. Thus, the fraction of dust ($f_{dust}$) and molecular gas mass ($f_{mol}$) decreases monotonically towards large $M_*$. The star formation efficiency (SFE, the inverse of the molecular gas depletion time) depends strongly on the distance from the MS and it is constant along the MS. As nearly all galaxies in the sample are central galaxies, we estimate the dependence of $f_{dust}$ and $f_{gas}$ on the host halo mass and find a tight anti-correlation. As the region where the MS is bending is numerically dominated by massive halos, we conclude that the bending of the MS is due to lower availability of molecular gas mass in massive halos rather than a lower efficiency in forming stars.
We present a suite of three-dimensional, high-resolution hydrodynamic simulations that follow the evolution of a massive (10^7 M_sun) pressure confined, star-forming neutral gas cloud moving through a hot intra-cluster medium (ICM). The main goal of the analysis is to get theoretical insight into the lifetimes and evolution of stellar systems like the recently discovered star-forming cloud SECCO~1 in the Virgo cluster of galaxies, but it may be of general interest for the study of the star-forming gas clumps that are observed in the tails of ram pressure stripped galaxies. Building upon a previous, simple simulation, we explored the effect of different relative velocity of the cloud and larger temperature of the ICM, as well as the effect of the cloud self-gravity. Moreover, we performed a simulation including star-formation and stellar feedback, allowing for a first time a direct comparison with the observed properties of the stars in the system. The survivability of the cold gas in the simulated clouds is granted on timescales of the order of 1 Gyr, with final cold gas fractions generally $>0.75$. In all cases, the simulated systems end up, after 1 Gyr of evolution, as symmetric clouds in pressure equilibrium with the external hot gas. We also confirm that gravity played a negligible role at the largest scales on the evolution of the clouds. In our simulation with star formation, star formation begins immediately, it peaks at the earliest times and decreases monotonically with time. Inhomogeneous supernova explosions are the cause of an asymmetric shape of the gas cloud, facilitating the development of instabilities and the decrease of the cold gas fraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا