ﻻ يوجد ملخص باللغة العربية
The $P$-$V$ phase transition and critical behavior in the extended phase space of asymptotic Anti-de Sitter (AdS) black holes have been widely investigated, in which four critical exponents around critical point are found to be consistent with values in mean field theory. Recently, another critical exponent $ u$ related to divergent correlation length at critical point has been investigated by using thermodynamic curvature scalar $R_N$ at critical point in charged AdS black hole. Moreover, one finds that the divergence behavior of $R_N$ at critical point indicates a universal property, i.e. characterized by a dimensionless constant that is identical to that for a van der Waals fluid. In this paper, we further check out this universal property through investigating thermodynamic curvature scalar in de Rham-Gabadadze-Tolley (dRGT) massive gravity, and find that this dimensionless constant is also indeed independent of horizon topology, massive graviton and dimension of spacetime. Furthermore, we investigate divergence behavior of thermodynamic curvature scalar at critical point in generic asymptotic Anti-de Sitter (AdS) black holes, and demonstrate the universality in this generic case. Those results give new insights into the microstructure of black holes.
In this paper, we extend the phase space of black holes enclosed by a spherical cavity of radius $r_{B}$ to include $Vequiv4pi r_{B}^{3}/3$ as a thermodynamic volume. The thermodynamic behavior of Schwarzschild and Reissner-Nordstrom (RN) black holes
Recently, the phase space of black holes in a spherical cavity of radius $r_{B}$ has been extended by introducing a thermodynamic volume $Vequiv4pi r_{B}^{3}/3$. In the extended phase space, we consider the thermodynamic geometry, which provides a po
Gravity is believed to have deep and inherent relation to thermodynamics. We study phase transition and critical behavior in the extended phase space of asymptotic anti de-Sitter (AdS) black holes in Einstein-Horndeski gravity. We demonstrate that th
We study the $P-V$ criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is t
We study certain bi-scalar-tensor theories emanating from conformal symmetry requirements of Horndeskis four-dimensional action. The former scalar is a Galileon with shift symmetry whereas the latter scalar is adjusted to have a higher order conforma