ﻻ يوجد ملخص باللغة العربية
We study the $P-V$ criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black hole. The black holes can have a Ricci flat ($k=0$), spherical ($k=1$), or hyperbolic ($k=-1$) horizon. We find that for the Ricci flat and hyperbolic Gauss-Bonnet black holes, no $P-V$ criticality and phase transition appear, while for the black holes with a spherical horizon, even when the charge of the black hole is absent, the $P-V$ criticality and the small black hole/large black hole phase transition will appear, but it happens only in $d=5$ dimensions; when the charge does not vanish, the $P-V$ criticality and the small black hole/large phase transition always appear in $d=5$ dimensions; in the case of $dge 6$, to have the $P-V$ criticality and the small black hole/large black hole phase transition, there exists an upper bound for the parameter $b=widetilde{alpha}|Q|^{-2/(d-3)}$, where $tilde {alpha}$ is the Gauss-Bonnet coefficient and $Q$ is the charge of the black hole. We calculate the critical exponents at the critical point and find that for all cases, they are the same as those in the van der Waals liquid-gas system.
We study the P-V criticality and phase transition in the extended phase space of charged anti-de Sitter black holes in canonical ensemble of ghost-free massive gravity, where the cosmological constant is viewed as a dynamical pressure of the black ho
Gravity is believed to have deep and inherent relation to thermodynamics. We study phase transition and critical behavior in the extended phase space of asymptotic anti de-Sitter (AdS) black holes in Einstein-Horndeski gravity. We demonstrate that th
In this paper, we study the thermodynamics especially the $P$-$V$ criticality of the Friedmann-Robertson-Walker (FRW) universe in the novel 4-dimensional Gauss-Bonnet gravity, where we define the thermodynamic pressure $P$ from the cosmological const
In this paper, we extend the phase space of black holes enclosed by a spherical cavity of radius $r_{B}$ to include $Vequiv4pi r_{B}^{3}/3$ as a thermodynamic volume. The thermodynamic behavior of Schwarzschild and Reissner-Nordstrom (RN) black holes
We suggest a new thermodynamic curvature, constructed via adiabatic compressibility, for examining the internal microstructure of charged black holes in an anti-de Sitter (AdS) background. We analyze the microscopic properties of small-large phase tr