ﻻ يوجد ملخص باللغة العربية
We review free energy evolution of QGP (Quark-gluon plasma) under zero-loop, one loop and two loop corrections in the mean field potential. The free energies of QGP under the comparison of zero-loop and loop corrections of the interacting potential among the quarks, anti-quarks and gluons are shown. We observe that the formation of stable QGP droplet is dependent on the loop corrections with the different parametrization values of fluid. With the increase in the parametrization value, stability of droplet formation increases with smaller size of droplet. This indicates that the formation of QGP droplet can be signified more importantly by the parametrization value like the Reynold number in fluid dynamics. It means that there may be different phenomenological parameter to define the stable QGP droplet when QGP fluid is studied under loop corrections.
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the propertie
The spectrum of emitted gluons from the process $mathrm{ggrightarrow ggg}$ has been evaluated by relaxing some of the approximations used in earlier works. The formula obtained in the present work has been applied to several physical quantities. A ge
We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous h
An error in the calculation of the Coulomb coupling parameter of the quark-gluon plasma is corrected.
We study weakly nonlinear wave perturbations propagating in a cold nonrelativistic and magnetized ideal quark-gluon plasma. We show that such perturbations can be described by the Ostrovsky equation. The derivation of this equation is presented for t