ﻻ يوجد ملخص باللغة العربية
We study weakly nonlinear wave perturbations propagating in a cold nonrelativistic and magnetized ideal quark-gluon plasma. We show that such perturbations can be described by the Ostrovsky equation. The derivation of this equation is presented for the baryon density perturbations. Then we show that the generalized nonlinear Schr{o}dinger (NLS) equation can be derived from the Ostrovsky equation for the description of quasi-harmonic wave trains. This equation is modulationally stable for the wave number $k < k_m$ and unstable for $k > k_m$, where $k_m$ is the wave number where the group velocity has a maximum. We study numerically the dynamics of initial wave packets with the different carrier wave numbers and demonstrate that depending on the initial parameters they can evolve either into the NLS envelope solitons or into dispersive wave trains.
We present a calculation of the heavy quark transport coefficients in a quark-gluon plasma under the presence of a strong external magnetic field, within the Lowest Landau Level (LLL) approximation. In particular, we apply the Hard Thermal Loop (HTL)
In the deconfined regime of a non-Abelian gauge theory at nonzero temperature, previously it was argued that if a (gauge invariant) source is added to generate nonzero holonomy, that this source must be linear for small holonomy. The simplest example
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes mu
This review cover our current understanding of strongly coupled Quark-Gluon Plasma (sQGP), especially theoretical progress in (i) explaining the RHIC data by hydrodynamics, (ii) describing lattice data using electric-magnetic duality; (iii) understan
Monopole-like objects have been identified in multiple lattice studies, and there is now a significant amount of literature on their importance in phenomenology. Some analytic indications of their role, however, are still missing. The t Hooft-Polyako