ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive optical focusing through perturbed scattering media with dynamic mutation algorithm

80   0   0.0 ( 0 )
 نشر من قبل Huanhao Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical focusing through/inside scattering media, like multimode fiber and biological tissues, has significant impact in biomedicine yet considered challenging due to strong scattering nature of light. Previously, promising progress has been made, benefiting from the iterative optical wavefront shaping, with which deep-tissue high-resolution optical focusing becomes possible. Most of iterative algorithms can overcome noise perturbations but fail to effectively adapt beyond the noise, e.g. sudden strong perturbations. Re-optimizations are usually needed for significant decorrelated medium since these algorithms heavily rely on the optimization in the previous iterations. Such ineffectiveness is probably due to the absence of a metric that can gauge the deviation of the instant wavefront from the optimum compensation based on the concurrently measured optical focusing. In this study, a square rule of binary-amplitude modulation, directly relating the measured focusing performance with the error in the optimized wavefront, is theoretically proved and experimentally validated. With this simple rule, it is feasible to quantify how many pixels on the spatial light modulator incorrectly modulate the wavefront for the instant status of the medium or the whole system. As an example of application, we propose a novel algorithm, dynamic mutation algorithm, with high adaptability against perturbations by probing how far the optimization has gone toward the theoretically optimum. The diminished focus of scattered light can be effectively recovered when perturbations to the medium cause significant drop of the focusing performance, which no existing algorithms can achieve due to their inherent strong dependence on previous optimizations. With further improvement, this study may boost or inspire many applications, like high-resolution imaging and stimulation, in instable scattering environments.



قيم البحث

اقرأ أيضاً

Imaging through scattering media is a useful and yet demanding task since it involves solving for an inverse mapping from speckle images to object images. It becomes even more challenging when the scattering medium undergoes dynamic changes. Various approaches have been proposed in recent years. However, to date, none is able to preserve high image quality without either assuming a finite number of sources for dynamic changes, assuming a thin scattering medium, or requiring the access to both ends of the medium. In this paper, we propose an adaptive inverse mapping (AIP) method which is flexible regarding any dynamic change and only requires output speckle images after initialization. We show that the inverse mapping can be corrected through unsupervised learning if the output speckle images are followed closely. We test the AIP method on two numerical simulations, namely, a dynamic scattering system formulated as an evolving transmission matrix and a telescope with a changing random phase mask at a defocus plane. Then we experimentally apply the AIP method on a dynamic fiber-optic imaging system. Increased robustness in imaging is observed in all three cases. With the excellent performance, we see the great potential of the AIP method in imaging through dynamic scattering media.
Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to addre ss this limitation. So far, these methods provide only acoustic diffraction-limited optical focusing. Here, we introduce nonlinear photoacoustic wavefront shaping (PAWS), which achieves optical diffraction-limited (i.e. single-speckle-grain) focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen memory effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. By maximizing the amplitude of the nonlinear PA signal, light is effectively focused to a single optical speckle grain. Experimental results demonstrate a clear optical focus on the scale of 5-7 micrometers, which is ~10 times smaller than the acoustic focus in linear dimension, with an enhancement factor of ~6000 in peak fluence. This technology has the potential to provide highly confined strong optical focus deep in tissue for microsurgery of Parkinsons disease and epilepsy or single-neuron imaging and optogenetic activation.
293 - Duygu Akbulut 2011
We study the focusing of light through random photonic materials using wavefront shaping. We explore a novel approach namely binary amplitude modulation. To this end, the light incident to a random photonic medium is spatially divided into a number o f segments. We identify the segments that give rise to fields that are out of phase with the total field at the intended focus and assign these a zero amplitude, whereas the remaining segments maintain their original amplitude. Using 812 independently controlled segments of light, we find the intensity at the target to be 75 +/- 6 times enhanced over the average intensity behind the sample. We experimentally demonstrate focusing of light through random photonic media using both an amplitude only mode liquid crystal spatial light modulator and a MEMS-based spatial light modulator. Our use of Micro Electro-Mechanical System (MEMS)-based digital micromirror devices for the control of the incident light field opens an avenue to high speed implementations of wavefront shaping.
Focusing light into opaque random or scattering media such as biological tissue is a much sought-after goal for biomedical applications such as photodynamic therapy, optical manipulation, and photostimulation. However, focusing with conventional lens es is restricted to one transport mean free path in scattering media, limiting both optical penetration depth and resolution. Focusing deeper is possible by using optical phase conjugation or wavefront shaping to compensate for the scattering. For practical applications, wavefront shaping offers the advantage of a robust optical system that is less sensitive to optical misalignment. Here, the phase of the incident light is spatially tailored using a phase-shifting array to pre-compensate for scattering. The challenge, then, is to determine the phase pattern which allows light to be optimally delivered to the target region. Optimization algorithms are typically employed for this purpose, with visible particles used as targets to generate feedback. However, using these particles is invasive, and light delivery is limited to fixed points. Here, we demonstrate a method for non-invasive and dynamic focusing, by using ultrasound encoding as a virtual guide star for feedback to an optimization algorithm. The light intensity at the acoustic focus was increased by an order of magnitude. This technique has broad biomedical applications, such as in optogenetics or photoactivation of drugs.
Full-field imaging through scattering media is fraught with many challenges. Despite many achievements in recent years, current imaging methods are too slow to deal with fast dynamics that occur for example in biomedical imaging. Here we present an u ltra-fast all-optical method, where the object to be imaged and the scattering medium (diffuser) are inserted into a highly multimode self-imaging laser cavity. We show that the intra-cavity laser light from the object is mainly focused onto specific regions of the scattering medium where the phase variations are low. Thus, round trip loss within the laser cavity is minimized, thereby overcoming most of the scattering effects. The method is exploited to image objects through scattering media whose diffusion angle is lower than the numerical aperture of the laser cavity. As our method is based on optical feedback inside a laser cavity, it can deal with temporal variations that occur on timescales as short as several cavity round trips, with an upper bound of 200 ns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا