ترغب بنشر مسار تعليمي؟ اضغط هنا

Second Harmonic Imaging Enhanced by Deep Learning Decipher

149   0   0.0 ( 0 )
 نشر من قبل Weiru Fan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Wavefront sensing and reconstruction are widely used for adaptive optics, aberration correction, and high-resolution optical phase imaging. Traditionally, interference and/or microlens arrays are used to convert the optical phase into intensity variation. Direct imaging of distorted wavefront usually results in complicated phase retrieval with low contrast and low sensitivity. Here, a novel approach has been developed and experimentally demonstrated based on the phase-sensitive information encoded into second harmonic signals, which are intrinsically sensitive to wavefront modulations. By designing and implementing a deep neural network, we demonstrate the second harmonic imaging enhanced by deep learning decipher (SHIELD) for efficient and resilient phase retrieval. Inheriting the advantages of two-photon microscopy, SHIELD demonstrates single-shot, reference-free, and video-rate phase imaging with sensitivity better than {lambda}/100 and high robustness against noises, facilitating numerous applications from biological imaging to wavefront sensing.

قيم البحث

اقرأ أيضاً

We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064nm, we predict second harmonic conversion efficiencies approximately five orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.
We describe an approach based on topology optimization that enables automatic discovery of wavelength-scale photonic structures for achieving high-efficiency second-harmonic generation (SHG). A key distinction from previous formulation and designs th at seek to maximize Purcell factors at individual frequencies is that our method not only aims to achieve frequency matching (across an entire octave) and large radiative lifetimes, but also optimizes the equally important nonlinear--coupling figure of merit $bar{beta}$, involving a complicated spatial overlap-integral between modes. We apply this method to the particular problem of optimizing micropost and grating-slab cavities (one-dimensional multilayered structures) and demonstrate that a variety of material platforms can support modes with the requisite frequencies, large lifetimes $Q > 10^4$, small modal volumes $sim (lambda/n)^3$, and extremely large $bar{beta} gtrsim 10^{-2}$, leading to orders of magnitude enhancements in SHG efficiency compared to state of the art photonic designs. Such giant $bar{beta}$ alleviate the need for ultra-narrow linewidths and thus pave the way for wavelength-scale SHG devices with faster operating timescales and higher tolerance to fabrication imperfections.
We employ structured light for the second-harmonic generation from subwavelength AlGaAs nanoparticles that support both electric and magnetic multipolar Mie resonances. The vectorial structure of the pump beam allows addressing selectively Mie-resona nt modes and control the strength of the generated nonlinear fields. We observe experimentally the enhancement of the second-harmonic generation for the azimuthally polarized vector beams near magnetic dipole resonance, and match our observations with the numerical decomposion of the Mie-type multipoles for the fundamental and generated second-harmonic fields
Nano-resonator integrated with two-dimensional materials (e.g. transition metal dichalcogenides) have recently emerged as a promising nano-optoelectronic platform. Here we demonstrate resonatorenhanced second-harmonic generation (SHG) in tungsten dis elenide using a silicon photonic crystal cavity. By pumping the device with the ultrafast laser pulses near the cavity mode at the telecommunication wavelength, we observe a near visible SHG with a narrow linewidth and near unity linear polarization, originated from the coupling of the pump photon to the cavity mode. The observed SHG is enhanced by factor of ~200 compared to a bare monolayer on silicon. Our results imply the efficacy of cavity integrated monolayer materials for nonlinear optics and the potential of building a silicon-compatible second-order nonlinear integrated photonic platform.
We theoretically investigate second harmonic generation that originates from the nonlinear, magnetic Lorentz force term from single and multiple apertures carved on thick, opaque metal substrates. The linear transmission properties of apertures on me tal substrates have been previously studied in the context of the extraordinary transmission of light. The transmission process is driven by a number of physical mechanisms, whose characteristics and relative importance depend on the thickness of the metallic substrate, slit size, and slit separation. In this work we show that a combination of cavity effects and surface plasmon generation gives rise to enhanced second harmonic generation in the regime of extraordinary transmittance of the pump field. We have studied both forward and backward second harmonic generation conversion efficiencies as functions of the geometrical parameters, and how they relate to pump transmission efficiency. The resonance phenomenon is evident in the generated second harmonic signal, as conversion efficiency depends on the duration of incident pump pulse, and hence its bandwidth. Our results show that the excitation of tightly confined modes as well as the combination of enhanced transmission and nonlinear processes can lead to several potential new applications such as photo-lithography, scanning microscopy, and high-density optical data storage devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا