ترغب بنشر مسار تعليمي؟ اضغط هنا

On binomial coefficients associated with Sierpi{n}ski and Riesel numbers

155   0   0.0 ( 0 )
 نشر من قبل Wing Hong Tony Wong
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the existence of Sierpi{n}ski numbers and Riesel numbers as binomial coefficients. We show that for any odd positive integer $r$, there exist infinitely many Sierpi{n}ski numbers and Riesel numbers of the form $binom{k}{r}$. Let $S(x)$ be the number of positive integers $r$ satisfying $1leq rleq x$ for which $binom{k}{r}$ is a Sierpi{n}ski number for infinitely many $k$. We further show that the value $S(x)/x$ gets arbitrarily close to 1 as $x$ tends to infinity. Generalizations to base $a$-Sierpi{n}ski numbers and base $a$-Riesel numbers are also considered. In particular, we prove that there exist infinitely many positive integers $r$ such that $binom{k}{r}$ is simultaneously a base $a$-Sierpi{n}ski and base $a$-Riesel number for infinitely many $k$.

قيم البحث

اقرأ أيضاً

Phase transition of the classical Ising model on the Sierpi{n}ski carpet, which has the fractal dimension $log_3^{~} 8 approx 1.8927$, is studied by an adapted variant of the higher-order tensor renormalization group method. The second-order phase tr ansition is observed at the critical temperature $T_{rm c}^{~} = 1.4783(1)$. Position dependence of local functions is studied by means of impurity tensors, which are inserted at different locations on the fractal lattice. The critical exponent $beta$ associated with the local magnetization varies by two orders of magnitude, depending on lattice locations, whereas $T_{rm c}^{~}$ is not affected.
101 - Zhi-Hong Sun 2020
Let $p$ be a prime with $p>3$, and let $a,b$ be two rational $p-$integers. In this paper we present general congruences for $sum_{k=0}^{p-1}binom akbinom{-1-a}kfrac p{k+b}pmod {p^2}$. For $n=0,1,2,ldots$ let $D_n$ and $b_n$ be Domb and Almkvist-Zudil in numbers, respectively. We also establish congruences for $$sum_{n=0}^{p-1}frac{D_n}{16^n},quad sum_{n=0}^{p-1}frac{D_n}{4^n}, quad sum_{n=0}^{p-1}frac{b_n}{(-3)^n},quad sum_{n=0}^{p-1}frac{b_n}{(-27)^n}pmod {p^2}$$ in terms of certain binary quadratic forms.
We present several sequences involving harmonic numbers and the central binomial coefficients. The calculational technique is consists of a special summation method that allows, based on proper two-valued integer functions, to calculate different fam ilies of power series which involve odd harmonic numbers and central binomial coefficients. Furthermore it is shown that based on these series a new type of nonlinear Euler sums that involve odd harmonic numbers can be calculated in terms of zeta functions.
The feedback vertex number $tau(G)$ of a graph $G$ is the minimum number of vertices that can be deleted from $G$ such that the resultant graph does not contain a cycle. We show that $tau(S_p^n)=p^{n-1}(p-2)$ for the Sierpi{n}ski graph $S_p^n$ with $ pgeq 2$ and $ngeq 1$. The generalized Sierpi{n}ski triangle graph $hat{S_p^n}$ is obtained by contracting all non-clique edges from the Sierpi{n}ski graph $S_p^{n+1}$. We prove that $tau(hat{S}_3^n)=frac {3^n+1} 2=frac{|V(hat{S}_3^n)|} 3$, and give an upper bound for $tau(hat{S}_p^n)$ for the case when $pgeq 4$.
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا