ﻻ يوجد ملخص باللغة العربية
The feedback vertex number $tau(G)$ of a graph $G$ is the minimum number of vertices that can be deleted from $G$ such that the resultant graph does not contain a cycle. We show that $tau(S_p^n)=p^{n-1}(p-2)$ for the Sierpi{n}ski graph $S_p^n$ with $pgeq 2$ and $ngeq 1$. The generalized Sierpi{n}ski triangle graph $hat{S_p^n}$ is obtained by contracting all non-clique edges from the Sierpi{n}ski graph $S_p^{n+1}$. We prove that $tau(hat{S}_3^n)=frac {3^n+1} 2=frac{|V(hat{S}_3^n)|} 3$, and give an upper bound for $tau(hat{S}_p^n)$ for the case when $pgeq 4$.
Phase transition of the classical Ising model on the Sierpi{n}ski carpet, which has the fractal dimension $log_3^{~} 8 approx 1.8927$, is studied by an adapted variant of the higher-order tensor renormalization group method. The second-order phase tr
In this paper, we investigate the existence of Sierpi{n}ski numbers and Riesel numbers as binomial coefficients. We show that for any odd positive integer $r$, there exist infinitely many Sierpi{n}ski numbers and Riesel numbers of the form $binom{k}{
By a finite type-graph we mean a graph whose set of vertices is the set of all $k$-subsets of $[n]={1,2,ldots, n}$ for some integers $nge kge 1$, and in which two such sets are adjacent if and only if they realise a certain order type specified in ad
Given a graph $H$ and a positive integer $n,$ the Tur{a}n number of $H$ for the order $n,$ denoted ${rm ex}(n,H),$ is the maximum size of a simple graph of order $n$ not containing $H$ as a subgraph. The book with $p$ pages, denoted $B_p$, is the gra
A $t$-bar visibility representation of a graph assigns each vertex up to $t$ horizontal bars in the plane so that two vertices are adjacent if and only if some bar for one vertex can see some bar for the other via an unobstructed vertical channel of