ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning on Real Geophysical Data: A Case Study for Distributed Acoustic Sensing Research

90   0   0.0 ( 0 )
 نشر من قبل Vincent Dumont
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Learning approaches for real, large, and complex scientific data sets can be very challenging to design. In this work, we present a complete search for a finely-tuned and efficiently scaled deep learning classifier to identify usable energy from seismic data acquired using Distributed Acoustic Sensing (DAS). While using only a subset of labeled images during training, we were able to identify suitable models that can be accurately generalized to unknown signal patterns. We show that by using 16 times more GPUs, we can increase the training speed by more than two orders of magnitude on a 50,000-image data set.

قيم البحث

اقرأ أيضاً

Moving loads such as cars and trains are very useful sources of seismic waves, which can be analyzed to retrieve information on the seismic velocity of subsurface materials using the techniques of ambient noise seismology. This information is valuabl e for a variety of applications such as geotechnical characterization of the near-surface, seismic hazard evaluation, and groundwater monitoring. However, for such processes to converge quickly, data segments with appropriate noise energy should be selected. Distributed Acoustic Sensing (DAS) is a novel sensing technique that enables acquisition of these data at very high spatial and temporal resolution for tens of kilometers. One major challenge when utilizing the DAS technology is the large volume of data that is produced, thereby presenting a significant Big Data challenge to find regions of useful energy. In this work, we present a highly scalable and efficient approach to process real, complex DAS data by integrating physics knowledge acquired during a data exploration phase followed by deep supervised learning to identify useful coherent surface waves generated by anthropogenic activity, a class of seismic waves that is abundant on these recordings and is useful for geophysical imaging. Data exploration and training were done on 130~Gigabytes (GB) of DAS measurements. Using parallel computing, we were able to do inference on an additional 170~GB of data (or the equivalent of 10 days worth of recordings) in less than 30 minutes. Our method provides interpretable patterns describing the interaction of ground-based human activities with the buried sensors.
Deep reinforcement learning has led to many recent-and groundbreaking-advancements. However, these advances have often come at the cost of both the scale and complexity of the underlying RL algorithms. Increases in complexity have in turn made it mor e difficult for researchers to reproduce published RL algorithms or rapidly prototype ideas. To address this, we introduce Acme, a tool to simplify the development of novel RL algorithms that is specifically designed to enable simple agent implementations that can be run at various scales of execution. Our aim is also to make the results of various RL algorithms developed in academia and industrial labs easier to reproduce and extend. To this end we are releasing baseline implementations of various algorithms, created using our framework. In this work we introduce the major design decisions behind Acme and show how these are used to construct these baselines. We also experiment with these agents at different scales of both complexity and computation-including distribut
Breakthrough advances in reinforcement learning (RL) research have led to a surge in the development and application of RL. To support the field and its rapid growth, several frameworks have emerged that aim to help the community more easily build ef fective and scalable agents. However, very few of these frameworks exclusively support multi-agent RL (MARL), an increasingly active field in itself, concerned with decentralised decision-making problems. In this work, we attempt to fill this gap by presenting Mava: a research framework specifically designed for building scalable MARL systems. Mava provides useful components, abstractions, utilities and tools for MARL and allows for simple scaling for multi-process system training and execution, while providing a high level of flexibility and composability. Mava is built on top of DeepMinds Acme citep{hoffman2020acme}, and therefore integrates with, and greatly benefits from, a wide range of already existing single-agent RL components made available in Acme. Several MARL baseline systems have already been implemented in Mava. These implementations serve as examples showcasing Mavas reusable features, such as interchangeable system architectures, communication and mixing modules. Furthermore, these implementations allow existing MARL algorithms to be easily reproduced and extended. We provide experimental results for these implementations on a wide range of multi-agent environments and highlight the benefits of distributed system training.
Artificial Intelligence (AI) has rapidly emerged as a key disruptive technology in the 21st century. At the heart of modern AI lies Deep Learning (DL), an emerging class of algorithms that has enabled todays platforms and organizations to operate at unprecedented efficiency, effectiveness, and scale. Despite significant interest, IS contributions in DL have been limited, which we argue is in part due to issues with defining, positioning, and conducting DL research. Recognizing the tremendous opportunity here for the IS community, this work clarifies, streamlines, and presents approaches for IS scholars to make timely and high-impact contributions. Related to this broader goal, this paper makes five timely contributions. First, we systematically summarize the major components of DL in a novel Deep Learning for Information Systems Research (DL-ISR) schematic that illustrates how technical DL processes are driven by key factors from an application environment. Second, we present a novel Knowledge Contribution Framework (KCF) to help IS scholars position their DL contributions for maximum impact. Third, we provide ten guidelines to help IS scholars generate rigorous and relevant DL-ISR in a systematic, high-quality fashion. Fourth, we present a review of prevailing journal and conference venues to examine how IS scholars have leveraged DL for various research inquiries. Finally, we provide a unique perspective on how IS scholars can formulate DL-ISR inquiries by carefully considering the interplay of business function(s), application areas(s), and the KCF. This perspective intentionally emphasizes inter-disciplinary, intra-disciplinary, and cross-IS tradition perspectives. Taken together, these contributions provide IS scholars a timely framework to advance the scale, scope, and impact of deep learning research.
Can health entities collaboratively train deep learning models without sharing sensitive raw data? This paper proposes several configurations of a distributed deep learning method called SplitNN to facilitate such collaborations. SplitNN does not sha re raw data or model details with collaborating institutions. The proposed configurations of splitNN cater to practical settings of i) entities holding different modalities of patient data, ii) centralized and local health entities collaborating on multiple tasks and iii) learning without sharing labels. We compare performance and resource efficiency trade-offs of splitNN and other distributed deep learning methods like federated learning, large batch synchronous stochastic gradient descent and show highly encouraging results for splitNN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا