ترغب بنشر مسار تعليمي؟ اضغط هنا

Muse: Multi-modal target speaker extraction with visual cues

149   0   0.0 ( 0 )
 نشر من قبل Zexu Pan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Speaker extraction algorithm relies on the speech sample from the target speaker as the reference point to focus its attention. Such a reference speech is typically pre-recorded. On the other hand, the temporal synchronization between speech and lip movement also serves as an informative cue. Motivated by this idea, we study a novel technique to use speech-lip visual cues to extract reference target speech directly from mixture speech during inference time, without the need of pre-recorded reference speech. We propose a multi-modal speaker extraction network, named MuSE, that is conditioned only on a lip image sequence. MuSE not only outperforms other competitive baselines in terms of SI-SDR and PESQ, but also shows consistent improvement in cross-dataset evaluations.



قيم البحث

اقرأ أيضاً

Target speech extraction, which extracts a single target source in a mixture given clues about the target speaker, has attracted increasing attention. We have recently proposed SpeakerBeam, which exploits an adaptation utterance of the target speaker to extract his/her voice characteristics that are then used to guide a neural network towards extracting speech of that speaker. SpeakerBeam presents a practical alternative to speech separation as it enables tracking speech of a target speaker across utterances, and achieves promising speech extraction performance. However, it sometimes fails when speakers have similar voice characteristics, such as in same-gender mixtures, because it is difficult to discriminate the target speaker from the interfering speakers. In this paper, we investigate strategies for improving the speaker discrimination capability of SpeakerBeam. First, we propose a time-domain implementation of SpeakerBeam similar to that proposed for a time-domain audio separation network (TasNet), which has achieved state-of-the-art performance for speech separation. Besides, we investigate (1) the use of spatial features to better discriminate speakers when microphone array recordings are available, (2) adding an auxiliary speaker identification loss for helping to learn more discriminative voice characteristics. We show experimentally that these strategies greatly improve speech extraction performance, especially for same-gender mixtures, and outperform TasNet in terms of target speech extraction.
The end-to-end approaches for single-channel target speech extraction have attracted widespread attention. However, the studies for end-to-end multi-channel target speech extraction are still relatively limited. In this work, we propose two methods f or exploiting the multi-channel spatial information to extract the target speech. The first one is using a target speech adaptation layer in a parallel encoder architecture. The second one is designing a channel decorrelation mechanism to extract the inter-channel differential information to enhance the multi-channel encoder representation. We compare the proposed methods with two strong state-of-the-art baselines. Experimental results on the multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed methods achieve up to 11.2% and 11.5% relative improvements in SDR and SiSDR respectively, which are the best reported results on this task to the best of our knowledge.
Emotion represents an essential aspect of human speech that is manifested in speech prosody. Speech, visual, and textual cues are complementary in human communication. In this paper, we study a hybrid fusion method, referred to as multi-modal attenti on network (MMAN) to make use of visual and textual cues in speech emotion recognition. We propose a novel multi-modal attention mechanism, cLSTM-MMA, which facilitates the attention across three modalities and selectively fuse the information. cLSTM-MMA is fused with other uni-modal sub-networks in the late fusion. The experiments show that speech emotion recognition benefits significantly from visual and textual cues, and the proposed cLSTM-MMA alone is as competitive as other fusion methods in terms of accuracy, but with a much more compact network structure. The proposed hybrid network MMAN achieves state-of-the-art performance on IEMOCAP database for emotion recognition.
Speaker extraction aims to mimic humans selective auditory attention by extracting a target speakers voice from a multi-talker environment. It is common to perform the extraction in frequency-domain, and reconstruct the time-domain signal from the ex tracted magnitude and estimated phase spectra. However, such an approach is adversely affected by the inherent difficulty of phase estimation. Inspired by Conv-TasNet, we propose a time-domain speaker extraction network (SpEx) that converts the mixture speech into multi-scale embedding coefficients instead of decomposing the speech signal into magnitude and phase spectra. In this way, we avoid phase estimation. The SpEx network consists of four network components, namely speaker encoder, speech encoder, speaker extractor, and speech decoder. Specifically, the speech encoder converts the mixture speech into multi-scale embedding coefficients, the speaker encoder learns to represent the target speaker with a speaker embedding. The speaker extractor takes the multi-scale embedding coefficients and target speaker embedding as input and estimates a receptive mask. Finally, the speech decoder reconstructs the target speakers speech from the masked embedding coefficients. We also propose a multi-task learning framework and a multi-scale embedding implementation. Experimental results show that the proposed SpEx achieves 37.3%, 37.7% and 15.0% relative improvements over the best baseline in terms of signal-to-distortion ratio (SDR), scale-invariant SDR (SI-SDR), and perceptual evaluation of speech quality (PESQ) under an open evaluation condition.
239 - Chenglin Xu , Wei Rao , Jibin Wu 2021
Speaker verification has been studied mostly under the single-talker condition. It is adversely affected in the presence of interference speakers. Inspired by the study on target speaker extraction, e.g., SpEx, we propose a unified speaker verificati on framework for both single- and multi-talker speech, that is able to pay selective auditory attention to the target speaker. This target speaker verification (tSV) framework jointly optimizes a speaker attention module and a speaker representation module via multi-task learning. We study four different target speaker embedding schemes under the tSV framework. The experimental results show that all four target speaker embedding schemes significantly outperform other competitive solutions for multi-talker speech. Notably, the best tSV speaker embedding scheme achieves 76.0% and 55.3% relative improvements over the baseline system on the WSJ0-2mix-extr and Libri2Mix corpora in terms of equal-error-rate for 2-talker speech, while the performance of tSV for single-talker speech is on par with that of traditional speaker verification system, that is trained and evaluated under the same single-talker condition.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا