ﻻ يوجد ملخص باللغة العربية
In the present paper, we prove that the toric ideals of certain $s$-block diagonal matching fields have quadratic Grobner bases. Thus, in particular, those are quadratically generated. By using this result, we provide a new family of toric degenerations of Grassmannians.
The universal Gr{o}bner basis of $I$, is a Gr{o}bner basis for $I$ with respect to all term orders simultaneously. Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the elements of the universal Gr{o}bner basis o
We study Grobner degenerations of Schubert varieties inside flag varieties. We consider toric degenerations of flag varieties induced by matching fields and semi-standard Young tableaux. We describe an analogue of matching field ideals for Schubert v
To any toric ideal $I_A$, encoded by an integer matrix $A$, we associate a matroid structure called {em the bouquet graph} of $A$ and introduce another toric ideal called {em the bouquet ideal} of $A$. We show how these objects capture the essential
Relying on the combinatorial classification of toric ideals using their bouquet structure, we focus on toric ideals of hypergraphs and study how they relate to general toric ideals. We show that hypergraphs exhibit a surprisingly general behavior: th
Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the primitive, the minimal, the indispensable and the fundamental binomials of the toric ideal $I_G$.