ترغب بنشر مسار تعليمي؟ اضغط هنا

On the universal Grobner bases of toric ideals of graphs

129   0   0.0 ( 0 )
 نشر من قبل Apostolos Thoma
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The universal Gr{o}bner basis of $I$, is a Gr{o}bner basis for $I$ with respect to all term orders simultaneously. Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the elements of the universal Gr{o}bner basis of the toric ideal $I_G$. We provide a bound for the degree of the binomials in the universal Gr{o}bner basis of the toric ideal of a graph. Finally we give a family of examples of circuits for which their true degrees are less than the degrees of some elements of the Graver basis.



قيم البحث

اقرأ أيضاً

In the present paper, we prove that the toric ideals of certain $s$-block diagonal matching fields have quadratic Grobner bases. Thus, in particular, those are quadratically generated. By using this result, we provide a new family of toric degenerations of Grassmannians.
We characterize the graphs $G$ for which their toric ideals $I_G$ are complete intersections. In particular we prove that for a connected graph $G$ such that $I_G$ is complete intersection all of its blocks are bipartite except of at most two. We pro ve that toric ideals of graphs which are complete intersections are circuit ideals. The generators of the toric ideal correspond to even cycles of $G$ except of at most one generator, which corresponds to two edge disjoint odd cycles joint at a vertex or with a path. We prove that the blocks of the graph satisfy the odd cycle condition. Finally we characterize all complete intersection toric ideals of graphs which are normal.
Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the primitive, the minimal, the indispensable and the fundamental binomials of the toric ideal $I_G$.
Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph $G$, checks whether its toric ideal $P_G$ is a complete intersection or not. Whenever $P_G$ is a complete intersection, the algorithm also returns a minimal set of generators of $P_G$. Moreover, we prove that if $G$ is a connected graph and $P_G$ is a complete intersection, then there exist two induced subgraphs $R$ and $C$ of $G$ such that the vertex set $V(G)$ of $G$ is the disjoint union of $V(R)$ and $V(C)$, where $R$ is a bipartite ring graph and $C$ is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if $R$ is $2$-connected and $C$ is connected, we list the families of graphs whose toric ideals are complete intersection.
We describe the universal Groebner basis of the ideal of maximal minors and the ideal of $2$-minors of a multigraded matrix of linear forms. Our results imply that the ideals are radical and provide bounds on the regularity. In particular, the ideals of maximal minors have linear resolutions. Our main theoretical contribution consists of introducing two new classes of ideals named after Cartwright and Sturmfels, and proving that they are closed under multigraded hyperplane sections. The gins of the ideals that we study enjoy special properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا