ﻻ يوجد ملخص باللغة العربية
LHS 1140 is an M dwarf known to host two known transiting planets at orbital periods of 3.77 and 24.7 days. The external planet (LHS 1140 b) is a rocky super-Earth that is located in the middle of the habitable zone of this low-mass star, placing this system at the forefront of the habitable exoplanet exploration. We further characterize this system by improving the physical and orbital properties and search for additional planetary-mass components in the system, also exploring the possibility of co-orbitals. We collected 113 new radial velocity observations with ESPRESSO over a 1.5-year time span with an average photon-noise precision of 1.07 m/s. We determine new masses with a precision of 6% for LHS 1140 b ($6.48 pm 0.46~M_{oplus}$) and 9% for LHS 1140 c ($m_c=1.78 pm 0.17~M_{oplus}$), reducing by half the previously published uncertainties. Although both planets have Earth-like bulk compositions, the internal structure analysis suggests that LHS 1140 b might be iron-enriched. In both cases, the water content is compatible to a maximum fraction of 10-12% in mass, which is equivalent to a deep ocean layer of $779 pm 650$ km for the habitable-zone planet LHS 1140 b. Our results also provide evidence for a new planet candidate in the system ($m_d= 4.8pm1.1~M_{oplus}$) on a ~78.9-day orbital period, which is detected through three independent methods. The analysis also allows us to discard other planets above 0.5 $M_{oplus}$ for periods shorter than 10 days and above 2 $M_{oplus}$ for periods up to one year. Finally, our analysis discards co-orbital planets of LHS 1140 b down to 1 $M_{oplus}$. Indications for a possible co-orbital signal in LHS 1140 c are detected in both radial velocity and photometric data, however. The new characterization of the system make it a key target for atmospheric studies of rocky worlds at different stellar irradiations
Terrestrial extrasolar planets around low-mass stars are prime targets when searching for atmospheric biosignatures with current and near-future telescopes. The habitable-zone Super-Earth LHS 1140 b could hold a hydrogen-dominated atmosphere and is a
LHS 1140 is a nearby mid-M dwarf known to host a temperate rocky super-Earth (LHS 1140 b) on a 24.737-day orbit. Based on photometric observations by MEarth and Spitzer as well as Doppler spectroscopy from HARPS, we report the discovery of an additio
Atmospheric characterisation of temperate, rocky planets is the holy grail of exoplanet studies. These worlds are at the limits of our capabilities with current instrumentation in transmission spectroscopy and challenge our state-of-the-art statistic
We study the mid-egress eclipse timing data gathered for the cataclysmic binary HU Aquarii during the years 1993-2014. The (O-C) residuals were previously attributed to a single ~7 Jupiter mass companion in ~5 au orbit or to a stable 2-planet system
We report the first discovery of a thick-disk planet, LHS 1815b (TOI-704b, TIC 260004324), detected in the TESS survey. LHS 1815b transits a bright (V = 12.19 mag, K = 7.99 mag) and quiet M dwarf located $ 29.87pm0.02 pc$ away with a mass of $0.502pm