ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Astrometry of the Metal-Poor Visual Binary $mu$ Cassiopeiae: Dynamical Masses, Helium Content, and Age

119   0   0.0 ( 0 )
 نشر من قبل Howard E. Bond
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Howard E. Bond




اسأل ChatGPT حول البحث

$mu$ Cassiopeiae is a nearby, high-velocity, metal-poor ($rm[Fe/H]=-0.81$) visual binary. We have used high-resolution imaging with the Hubble Space Telescope (HST), obtained over nearly two decades, to determine the period (21.568 yr) and precise orbital elements. Combining these with published ground- and space-based astrometry, we determined dynamical masses for both components of $mu$ Cas: $0.7440pm0.0122,M_odot$ for the G5 V primary, and $0.1728pm0.0035,M_odot$ for its faint dM companion. We detect no significant perturbations in the HST astrometry due to a third body in the system. The primary aim of our program was to determine, with the aid of stellar models, the helium content and age of the metal-deficient primary star, $mu$ Cas A. Although we now have a precise mass, there remain uncertainties about other parameters, including its effective temperature. Moreover, a re-examination of archival interferometric observations leads to a suspicion that the angular diameter was overestimated by a few percent. In the absolute magnitude versus color plane, $mu$ Cas A lies slightly cooler and more luminous than the main sequence of the globular cluster 47 Tucanae; this may imply that the star has a lower helium content, and/or is older, and/or has a higher metallicity, than the cluster. Our best estimates for the helium content and age of $mu$ Cas A are $Y=0.255pm0.014$ and $12.7pm2.7$ Gyr--making $mu$ Cas possibly the oldest star in the sky visible to the naked eye. Improved measurements of the absolute parallax of the system, the effective temperature of $mu$ Cas A, and its angular diameter would provide tighter constraints.



قيم البحث

اقرأ أيضاً

67 - S. S. Larsen 2021
We recently found the globular cluster (GC) EXT8 in M31 to have an extremely low metallicity of [Fe/H]=-2.91+/-0.04 using high-resolution spectroscopy. Here we present a colour-magnitude diagram (CMD) for EXT8, obtained with the Wide Field Camera 3 o n board the Hubble Space Telescope. Compared with the CMDs of metal-poor Galactic GCs, we find that the upper red giant branch (RGB) of EXT8 is about 0.03 mag bluer in F606W-F814W and slightly steeper, as expected from the low spectroscopic metallicity. The observed colour spread on the upper RGB is consistent with being caused entirely by the measurement uncertainties, and we place an upper limit of sigma(F606W-F814W)=0.015 mag on any intrinsic colour spread. The corresponding metallicity spread can be up to sigma([Fe/H])=0.2 dex or >0.7 dex, depending on the isochrone library adopted. The horizontal branch (HB) is located mostly on the blue side of the instability strip and has a tail extending to at least M(F606W)=+3, as in the Galactic GC M15. We identify two candidate RR Lyrae variables and several UV-luminous post-HB/post AGB star candidates, including one very bright (M(F300X)=-3.2) source near the centre of EXT8. The surface brightness of EXT8 out to a radius of 25 arcsec is well fitted by a Wilson-type profile with an ellipticity of epsilon=0.20, a semi-major axis core radius of 0.25, and a central surface brightness of 15.2 mag per square arcsec in the F606W band, with no evidence of extra-tidal structure. Overall, EXT8 has properties consistent with it being a normal, but very metal-poor GC, and its combination of relatively high mass and very low metallicity thus remains challenging to explain in the context of GC formation theories operating within the hierarchical galaxy assembly paradigm.
The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurem ents back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon As age is ~2.7 Gyr. Procyon Bs location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitors mass was 1.9-2.2 Msun, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ~5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (~0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.
348 - L. R. Bedin , D. Apai (3 2017
Located at ~2pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman16AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity , and planet-hosting frequency. In the first study of this series -- based on a multi-cycle Hubble Space Telescope (HST) program -- we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5+/-0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.
Models of stellar structure and evolution can be constrained using accurate measurements of the parameters of eclipsing binary members of open clusters. Multiple binary stars provide the means to tighten the constraints and, in turn, to improve the p recision and accuracy of the age estimate of the host cluster. In the previous two papers of this series, we have demonstrated the use of measurements of multiple eclipsing binaries in the old open cluster NGC6791 to set tighter constraints on the properties of stellar models than was previously possible, thereby improving both the accuracy and precision of the cluster age. We identify and measure the properties of a non-eclipsing cluster member, V56, in NGC,6791 and demonstrate how this provides additional model constraints that support and strengthen our previous findings. We analyse multi-epoch spectra of V56 from FLAMES in conjunction with the existing photometry and measurements of eclipsing binaries in NGC6971. The parameters of the V56 components are found to be $M_{rm p}=1.103pm 0.008 M_{odot}$ and $M_{rm s}=0.974pm 0.007 M_{odot}$, $R_{rm p}=1.764pm0.099 R_{odot}$ and $R_{rm s}=1.045pm0.057 R_{odot}$, $T_{rm eff,p}=5447pm125$ K and $T_{rm eff,s}=5552pm125$ K, and surface [Fe/H]=$+0.29pm0.06$ assuming that they have the same abundance. The derived properties strengthen our previous best estimate of the cluster age of $8.3pm0.3$ Gyr and the mass of stars on the lower red giant branch (RGB), which is $M_{rm RGB} = 1.15pm0.02M_{odot}$ for NGC6791. These numbers therefore continue to serve as verification points for other methods of age and mass measures, such as asteroseismology.
We present absolute parallaxes and proper motions for seven members of the Hyades open cluster, pre-selected to lie in the core of the cluster. Our data come from archival astrometric data from FGS 3, and newer data for 3 Hyads from FGS 1R, both whit e-light interferometers on the Hubble Space Telescope (HST). We obtain member parallaxes from six individual Fine Guidance Sensor (FGS) fields and use the field containing van Altena 622 and van Altena 627 (= HIP 21138) as an example. Proper motions, spectral classifications and VJHK photometry of the stars comprising the astrometric refer- ence frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each Hyad. The parallax of vA 627 is significantly improved by including a perturbation orbit for this previously known spectroscopic binary, now an astrometric binary. Compared to our original (1997) determina- tions, a combination of new data, updated calibration, and improved analysis lowered the individual parallax errors by an average factor of 4.5. Comparing parallaxes of the four stars contained in the Hipparcos catalog, we obtain an average factor of 11 times improvement with the HST . With these new results, we also have better agreement with Hipparcos for the four stars in common. These new parallaxes provide an average distance for these seven members, < D > = 47.5 pc, for the core a pm 1 - {sigma} dispersion depth of 3.6 pc, and a minimum depth from individual components of 16.0 pm 0.9 pc. Absolute magnitudes for each member are compared to established main sequences, with excellent agreement. We obtain a weighted average distance modulus for the core of the Hyades of m-M=3.376 pm 0.01, a value close to the previous Hipparcos values, m-M=3.33pm 0.02.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا